Full Paper View Go Back
On the General Product-connectivity Index of Transformation Graphs
B. Basavanagoud1 , C.S. Gali2
Section:Research Paper, Product Type: Isroset-Journal
Vol.5 ,
Issue.5 , pp.33-40, Oct-2018
CrossRef-DOI: https://doi.org/10.26438/ijsrmss/v5i5.3340
Online published on Oct 31, 2018
Copyright © B. Basavanagoud , C.S. Gali . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: B. Basavanagoud , C.S. Gali , “On the General Product-connectivity Index of Transformation Graphs,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.5, pp.33-40, 2018.
MLA Style Citation: B. Basavanagoud , C.S. Gali "On the General Product-connectivity Index of Transformation Graphs." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.5 (2018): 33-40.
APA Style Citation: B. Basavanagoud , C.S. Gali , (2018). On the General Product-connectivity Index of Transformation Graphs. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(5), 33-40.
BibTex Style Citation:
@article{Basavanagoud_2018,
author = {B. Basavanagoud , C.S. Gali },
title = {On the General Product-connectivity Index of Transformation Graphs},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {10 2018},
volume = {5},
Issue = {5},
month = {10},
year = {2018},
issn = {2347-2693},
pages = {33-40},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=864},
doi = {https://doi.org/10.26438/ijcse/v5i5.3340}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i5.3340}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=864
TI - On the General Product-connectivity Index of Transformation Graphs
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - B. Basavanagoud , C.S. Gali
PY - 2018
DA - 2018/10/31
PB - IJCSE, Indore, INDIA
SP - 33-40
IS - 5
VL - 5
SN - 2347-2693
ER -
Abstract :
The general product-connectivity index is a molecular structure descriptor of a molecular graph, which generalizes both Randi index and second Zagreb index. In this paper, we obtain general product-connectivity index of subdivision graph, partial complement of subdivision graph, semitotal-point graph, semitotal-line graph and total graph. Also bounds for general product-connectivity index of some transformation graphs.
Key-Words / Index Term :
General product-connectivity index, Semitotal-point graph, Semitotal-line graph, Total transformation graphs, First and second Zagreb indices
References :
[1] B. Basavanagoud, P.V. Patil, “A criterion for (non-)
planarity of the transformation graph when
”, J. Discrete Math. Sci. Crypt., Vol. 13,
pp. 601-610, 2010.
[2] B. Basavanagoud, I. Gutman, C.S. Gali, “On second
Zagreb index and coindex of some derived graphs”,
Kragujevac J. Sci., Vol. 37, pp. 113-121, 2015.
[3] B. Basavanagoud, C.S. Gali, Computing first and
second Zagreb indices of generalized xyz-point
-line transformation graphs, J. Glob. Res. Math.
Arch., Vol. 5, Issue. 4, pp. 100-122, 2018.
[4] B. Basavanagoud, C.S. Gali, On general
sum-connectivity index of generalized xyz-point-line
transformation graphs, International J. Math. Sci. Engg.
Appls. Vol. 12, No. I, pp. 123-142, 2018.
[5] B. Bollob s and P. Erd s, “Graphs of extremal
weights”, Ars Combinatoria, Vol. 50, pp. 225-233, 1998.
[6] F. Harary, “Graph Theory”. Addison- Wesley, Reading,
Mass, 1969.
[7] J.A. Gallian, “A dynamic survey of graph labeling”,
Electron. J. Combin., 2017
[8] I. Gutman, N. Trinajsti , “Graph theory and molecular
orbitals, Total electron energy of alternant
hydrocarbons”, Chem. Phys. Lett., Vol. 17, pp. 535-538,
1972.
[9] G. Indulal, A. Vijayakumar, “A note on energy of some
Graphs”, MATCH Commun. Math. Comput. Chem.,
Vol. 59, pp. 269-274, 2008.
[10] M. Karelson, “Molecular Descriptors in QSAR/QSPR”,
Wiley-Interscience , New York, USA, 2000.
[11] V.R. Kulli, “College graph theory”, Vishwa Internati-
onal Publications, Gulbarga, India 2012.
[12] X. Li, H. Zhao, “Trees with the first three smallest and
largest generalized topological indices”, MATCH
Commun, Math. Comput. Chem., Vol. 50, pp. 57-62,
2004.
[13] J.Rajeshni Golda, S.S. Sandhya, S. Somasundram,
"Some Results on Contra Harmonic Mean Labeling of
Graphs", International Journal of Scientific Research
in Mathematical and Statistical Sciences, Vol.5,
Issue.4, pp. 311-319, 2018.
[14] M. Randi , “On characterization of molecular
Branching”, J. of the Am. Chem. Soc., Vol. 97, pp.
6609-6615, 1975.
[15] E. Sampathkumar, S.B. Chikkodimath, “Semitotal
graphs of a graph-I”, J. Karnatak Univ. Sci., Vol. 18,
pp. 274-280, 1973.
[16] T. Subhramaniyan and S. Suruthi, "Anti-magic labeling
for Boolean graph of path BG(P_n), (n≥4)",
International Journal of Scientific Research in
Mathematical and Statistical Sciences, Vol.5, Issue.4,
pp. 306-310, 2018.
[17] H. Wang, J.-B. Liu, S. Wang, W. Gao, S. Akhter, M.
Imran, M. R. Farahani, “Sharp bounds for the general
sum-connectivity indices of transformation graphs”,
Discrete Dyn. Nat. Soc., Vol. 2017, paper id. 2941615,
2017.
[18] B. Wu, J. Meng, L. Xu, “Basic properties of total
transformation graphs”, J. Math. Study, Vol. 34,
pp. 109-116, 2001.
[19] B. Zhou, N. Trinajsti , On general sum-connectivity
index, J. Math. Chem. Vol. 47, pp. 210-218, 2010.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.