Full Paper View Go Back
A Bivariate Binomial Distribution
S. R. Supanekar1
Section:Research Paper, Product Type: Isroset-Journal
Vol.5 ,
Issue.5 , pp.60-64, Oct-2018
CrossRef-DOI: https://doi.org/10.26438/ijsrmss/v5i5.6064
Online published on Oct 31, 2018
Copyright © S. R. Supanekar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: S. R. Supanekar, “A Bivariate Binomial Distribution,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.5, pp.60-64, 2018.
MLA Style Citation: S. R. Supanekar "A Bivariate Binomial Distribution." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.5 (2018): 60-64.
APA Style Citation: S. R. Supanekar, (2018). A Bivariate Binomial Distribution. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(5), 60-64.
BibTex Style Citation:
@article{Supanekar_2018,
author = {S. R. Supanekar},
title = {A Bivariate Binomial Distribution},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {10 2018},
volume = {5},
Issue = {5},
month = {10},
year = {2018},
issn = {2347-2693},
pages = {60-64},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=867},
doi = {https://doi.org/10.26438/ijcse/v5i5.6064}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i5.6064}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=867
TI - A Bivariate Binomial Distribution
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - S. R. Supanekar
PY - 2018
DA - 2018/10/31
PB - IJCSE, Indore, INDIA
SP - 60-64
IS - 5
VL - 5
SN - 2347-2693
ER -
Abstract :
In this paper, we introduce a bivariate binomial distribution that allows positive, zero or negative correlation between two variables which depends on multiplicative factor parameter. The marginal distributions of the bivariate binomial distribution are the univariate binomial distributions. Moment estimators and maximum likelihood estimators of parameters involved in this distribution are discussed. Sample observations are simulated from bivariate binomial distribution using the conditional distribution technique and test of the goodness of fit is carried out.
Key-Words / Index Term :
Bivariate binomial distribution; Maximum likelihood estimation; Test of the goonness of fit
References :
[1] S. Kocherlakota, K. Kocherlakota, “Bivariate Discrete Distributions”, Marcel Dekker, New York, 1992
[2] P. Holgate, “Estimation for the bivariate Poisson distribution”, Biometrika, Vol.51, pp.241-245, 1964.
[3] H. Teicher, “On the multivariate Poisson distribution”, Skandinavisk Aktuarietidskrift, Vol.37, pp.1-9, 1954
[4] D. Karlis and I. Ntzoufras, “Analysis of sports data by using bivariate Poisson models”, The Statistician, Vol.52(3), pp.381-393, 2003.
[5] J. Lakshminarayana, S. N. N. Pandit, K. Rao, Srinivasa, “On Bivariate Poisson distribution”, Commun. Statistics-Theory Methods, Vol.28(2), pp.267-276, 1999
[6] F. Famoye, “A new bivariate generlized Poisson distribution”, Statistica Neerlandica, Vol. 64(1), pp.112-124, 2010
[7] S. R. Supanekar and D. T. Shirke, “A new bivariate generalized power series distributiion”, Int. J. Agricult. Stat. Sci., Vol. 10(2), pp.343-349, 2014
[8] S. R. Supanekar, "A Bivariate Discrete Distribution from Freund Bivariate Exponential Distribution", International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5(2), pp.243-246, 2018
[9] N. L. Johnson, S. Kotz, and N. Balakrishnan, “Discrete multivariate distributions”, John Wiley and Sons, New York, 1997.
[10] O. V. Sarmanov, “Generalized normal correlation and two-dimensional Freshet classes”, Doklady (Sovyet Mathematics), Tom 168, pp.596-599, 1966
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.