Full Paper View Go Back
Empirical Robust Multivariate Regression Parameter Estimation Using Median Approach
O.K Sajana1 , T.A Sajesh2
Section:Research Paper, Product Type: Isroset-Journal
Vol.5 ,
Issue.5 , pp.65-71, Oct-2018
CrossRef-DOI: https://doi.org/10.26438/ijsrmss/v5i5.6571
Online published on Oct 31, 2018
Copyright © O.K Sajana, T.A Sajesh . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: O.K Sajana, T.A Sajesh, “Empirical Robust Multivariate Regression Parameter Estimation Using Median Approach,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.5, pp.65-71, 2018.
MLA Style Citation: O.K Sajana, T.A Sajesh "Empirical Robust Multivariate Regression Parameter Estimation Using Median Approach." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.5 (2018): 65-71.
APA Style Citation: O.K Sajana, T.A Sajesh, (2018). Empirical Robust Multivariate Regression Parameter Estimation Using Median Approach. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(5), 65-71.
BibTex Style Citation:
@article{Sajana_2018,
author = {O.K Sajana, T.A Sajesh},
title = {Empirical Robust Multivariate Regression Parameter Estimation Using Median Approach},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {10 2018},
volume = {5},
Issue = {5},
month = {10},
year = {2018},
issn = {2347-2693},
pages = {65-71},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=868},
doi = {https://doi.org/10.26438/ijcse/v5i5.6571}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i5.6571}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=868
TI - Empirical Robust Multivariate Regression Parameter Estimation Using Median Approach
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - O.K Sajana, T.A Sajesh
PY - 2018
DA - 2018/10/31
PB - IJCSE, Indore, INDIA
SP - 65-71
IS - 5
VL - 5
SN - 2347-2693
ER -
Abstract :
Main purpose of multivariate regression analysis is the estimation of model parameters. The use of maximum likelihood method would not be appropriate in estimation problems while data contains outlier or extreme observations. So it is necessary to find a parameter estimation method in which the value of the estimator is not much affected by small changes in the data. This paper introduces robust method for multivariate regression based on robust estimation of location and scatter matrix of predictor and response variables. In this paper Comedian method is taken as a robust estimator of location and scatter. Based on the simulations, the finite-sample efficiency and robustness of the estimator are investigated. Efficiency of proposed robust estimators is compared with maximum likelihood estimator, minimum covariance determinant estimator and orthogonalized Gnanadesikan-Kettenring estimator in terms of mean squared errors. Proposed estimator combines high robustness and high efficiency in estimation. The proposed method is illustrated on a real data set.
Key-Words / Index Term :
Multivariate Regression, Outliers Detection, Comedian Approach, Finite Sample Efficiency
References :
[1]. V. Barnett, T. Lewis, “Outliers in Statistical Data”, 3rd ed. Chichester, John Wiley & Sons, pp. 27-52, 1994.
[2]. T.A. Sajesh, M. R. Srinivasan. “An Overview of Multiple Outliers in Multidimensional Data”, Sri Lankan Journal of Applied statistics, Vol. 14, Issue. 2, pp. 87-120, 2013.
[3]. R.A. Maronna, V.J. Yohai, “Robust estimation in simultaneous equation models”, Journal of Statistical Planning and Inference, Vol. 57, Issue. 2, pp. 233-244, 1997.
[4]. R. Koenker, S. Portnoy, “M Estimation of Multivariate Regressions”, Journal of the American Statistical Association, Vol. 185, Issue. 412, pp. 1060–1068, 1990.
[5]. Z.D. Bai, N.R. Chen, B.Q. Miao, C.R. Rao, “Asymptotic Theory of Least Distance Estimate in Multivariate Linear Models”, Statistics, Vol. 21, Issue. 4, pp. 503-51, 1990.
[6]. E. Ollila, H. Oja, T.P. Hettmansperger, “Estimates of regression coefficients based on sign covariance matrix”, Journal of Royal Statistical Society: Series B, Vol. 64, Issue. 3, pp. 447-466, 2002.
[7]. P.J. Rousseeuw, “Least Median of Squares Regression”, Journal of American Statistical Association, Vol. 79, Issue. 388, pp. 871–880, 1984.
[8]. P.J. Rousseeuw, S. V. Aelst, K. V. Driessen, J. Agull´o, “Robust multivariate regression”, Technometrics, Vol. 46, Issue. 3, pp. 293-305, 2004.
[9]. T.A. Sajesh, M.R. Srinivasan. “Outlier Detection for High Dimensional Data using Comedian Approach”, Journal of Statistical Computation and Simulation, Vol. 82, Issue. 5, pp. 745-757, 2012.
[10]. R.A. Maronna, R.H. Zamar, “Robust estimates of location and dispersion for high-dimensional data sets”, Technometrics, Vol. 44, Issue. 4, pp. 307–317, 2002.
[11]. P.J. Rousseeuw, A.M. Leroy, “Robust Regression and Outlier Detection”, New York: John Wiley & Sons, pp. 112-143, 1987.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.