Full Paper View Go Back

Properties of New Parametric Generalized Entropy of Order Statistics

Rifat Nisa1 , M.A.K. Baig2

Section:Research Paper, Product Type: Isroset-Journal
Vol.5 , Issue.5 , pp.82-87, Oct-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v5i5.8287


Online published on Oct 31, 2018


Copyright © Rifat Nisa , M.A.K. Baig . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Rifat Nisa , M.A.K. Baig, “Properties of New Parametric Generalized Entropy of Order Statistics,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.5, pp.82-87, 2018.

MLA Style Citation: Rifat Nisa , M.A.K. Baig "Properties of New Parametric Generalized Entropy of Order Statistics." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.5 (2018): 82-87.

APA Style Citation: Rifat Nisa , M.A.K. Baig, (2018). Properties of New Parametric Generalized Entropy of Order Statistics. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(5), 82-87.

BibTex Style Citation:
@article{Nisa_2018,
author = {Rifat Nisa , M.A.K. Baig},
title = {Properties of New Parametric Generalized Entropy of Order Statistics},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {10 2018},
volume = {5},
Issue = {5},
month = {10},
year = {2018},
issn = {2347-2693},
pages = {82-87},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=871},
doi = {https://doi.org/10.26438/ijcse/v5i5.8287}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i5.8287}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=871
TI - Properties of New Parametric Generalized Entropy of Order Statistics
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - Rifat Nisa , M.A.K. Baig
PY - 2018
DA - 2018/10/31
PB - IJCSE, Indore, INDIA
SP - 82-87
IS - 5
VL - 5
SN - 2347-2693
ER -

557 Views    184 Downloads    91 Downloads
  
  

Abstract :
In this article, we introduce a new two parametric generalized uncertainty measure based on order statistics and also its residual version. Some general expressions of this proposed measure corresponding to particular probability distributions are derived. Finally, we study a lower bound for the proposed dynamic measure.

Key-Words / Index Term :
Shannon’s Entropy; Order Statistics; Probability Integral Transformation; Residual Entropy; Generalized Information

References :
B. C. Arnold, N. Blakrishan and N. H. Nagraja, “A First Course in Order Statistics”, John Wiley and Sons, New York, 1992.
S. Baratpour, J. Ahmadi and N.R. Arghami, “Some Characterizations Based On Entropy of Order Statistics and Record Values”, Communications in Statistics-Theory and Methods, Vol.36, Issue.1, pp.47–57, 2007.
J. Beirlant, E. J. Dudewicz, L. Gyorfi and E. C. Van Der Meulen, “Non Parametric Entropy Estimation: An Overview”, International Journal of the Mathematical Statistics Sciences, Vol.6, Issue 1, pp.17-39, 1997.
H. A. David and H. N. Nagaraja, “Order Statistics,” Wiley New York, 2003.
N. Ebrahimi, “How to Measure Uncertainty in the Residual Lifetime Distribution” Sankhya Series. A, Vol.58 pp.48-56, 1996.
N. Ebrahimi, E. S. Soofi and H. Zahedi, “Information Properties of Order Statistics and Spacing”. IEEE Trans. Information Theory: Vol.50, pp.177-183, 2004.
S. Kullback, “Information Theory and Statistics”, Wiley New York, 1959.
C. E. Shannon, “A Mathematical Theory of Communication”. Bell System Technical Journal. Vol.27, Issue 3, pp.379-423,1948.
R. Thapliyal, H.C. Taneja, “Generalized Entropy of Order Statistics” Applied Mathematics, Vol.3, pp.1977-1982, 2012.
R.S. Verma, “Generalization of Renyi’s Entropy of Order α,” Journal of Mathematical Sciences, Vol.1, pp.34-48, 1966.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation