Full Paper View Go Back

Some Solutions of Einstein-Maxwell Field Equations for Charged Fluid Sphere

Abhishek Kumar Singh1

Section:Research Paper, Product Type: Isroset-Journal
Vol.5 , Issue.5 , pp.97-103, Oct-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v5i5.97103


Online published on Oct 31, 2018


Copyright © Abhishek Kumar Singh . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: Abhishek Kumar Singh, “Some Solutions of Einstein-Maxwell Field Equations for Charged Fluid Sphere,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.5, pp.97-103, 2018.

MLA Style Citation: Abhishek Kumar Singh "Some Solutions of Einstein-Maxwell Field Equations for Charged Fluid Sphere." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.5 (2018): 97-103.

APA Style Citation: Abhishek Kumar Singh, (2018). Some Solutions of Einstein-Maxwell Field Equations for Charged Fluid Sphere. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(5), 97-103.

BibTex Style Citation:
@article{Singh_2018,
author = {Abhishek Kumar Singh},
title = {Some Solutions of Einstein-Maxwell Field Equations for Charged Fluid Sphere},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {10 2018},
volume = {5},
Issue = {5},
month = {10},
year = {2018},
issn = {2347-2693},
pages = {97-103},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=874},
doi = {https://doi.org/10.26438/ijcse/v5i5.97103}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i5.97103}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=874
TI - Some Solutions of Einstein-Maxwell Field Equations for Charged Fluid Sphere
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - Abhishek Kumar Singh
PY - 2018
DA - 2018/10/31
PB - IJCSE, Indore, INDIA
SP - 97-103
IS - 5
VL - 5
SN - 2347-2693
ER -

370 Views    190 Downloads    90 Downloads
  
  

Abstract :
In the present paper we have found some solutions of Einstein-Maxwell Field equations for some charged fluid sphere. Assuming that the spin of the individual particles compositing the fluids are all aligned along radial direction, we have obtained solutions by choosing metric potentials as λ(r) and υ(r) on different suitable forms or conditions. Pressure and density have been also calculated for the distribution and the physical constants appearing in the solution have been evaluated by matching the solutions to the Reissner-Nordstrom metric at the boundary. It is found that our metric give the solutions to only that value of constants for which pressure and density are positive. Also some physical and kinematical properties of the models are discussed.

Key-Words / Index Term :
Einstein-Cartan theory, Charged fluid sphere, Metric potential, boundary conditions, pressure, matter density, charged density

References :
[1] Arkuszewski, W., Kopezynski, W. and Ponomariew, U.
N. (1975) : Comm. Phys. 45, 183
[2] Benerji. S.(1978) : G. R. G. 9, 783
[3] Cartan, E.(1922) : Coptes Rendus(Paris), 174, 593. 40,
325
[4] Hawking, S. W.(1966) : Proc. Roy. Soc. Lond. A295,
490
[5] Hehl, F. W(1974) : G. R. G. 4, 333
[6] Hehl, F. W.(1973) : G. R. G. 5, 491.
[7] Hehl, F. W. Vander Hyde,P. Kerlick, G. D. and Nestar,
T. M. (1976) : Rev. Mod. Phys. 48, 393.
[8] Kopczynski, W.(1973a) : Phys. Letters 434, 63
[9] Kopczynski, W.(1975) : Scripts Fac. Sci. Nat. Usep
Brunensis Physica 3-4, 5, 255.
[10] Krori, K. D.,Guha thakurta, S. N. and Paul,B. B.(1974)
: J. Phys., A7, 1884.
[11] Kuchowicz, B.(1975 a) : Acta Cosmologyica, 3,109
[12] Kuchowicz, B.(1975 b) : Acta Phys. Polon, B6, 173
[13] Kuchowicz, B.(1975) : Acta Cosmologyica, 4, 67
[14] Mehra, A. L and Gokharoo, M. K.(1992) : G. R. G.,
24, 1011
[15] Nduka, A.(1976) : Gen. Rel. Grav., 8, 371.
[16] Penrose, R.(1965) : Phys Rev. Lett., 14, 57
[17] Prasanna, A. R.(1974) : Einstein-Cartan theory or the
geometrization or mass and spin (Preprints)
[18] Parasanna, A. R.(1975) : Phys Rev. Lett. D11, 2075
[19] Prasanna, A. R.(1975) : Phys. Lett., A 54, 17
[20] Ray Chaudhuri, A. K.(1975) : Phys. Rev., D12, 952
[21] Raychaudhuri, A. K. and Banerji. S.(1977) : Phys.
Rev., D 16, 281
[22] Singh, T. and Yadav, R. B. S.(1978) : Acta Phys.
Polon, B 9, 837
[23] Suh, Y. B.(1973) : Prog. Tho, Phys., 59, 1853
[24] Som, M. M. and Bedran(1981) : Phys. Rev., D 24,
2561
[25] Tolman, R. C.(1939) : Phys. Rev., 55, 364
[26] Trautman, R.(1973) : Inst. Haz. Alla. Symp. Mat. 12,
133 503
[27] Yadav, R. B. S. et. al. (2002) : Proc. Math. Soc. 18,
2212
[28] Yadav, R. B. S. et. al. (2009), P. A. S., 15, 88-92.
[29] Tsoblis, D.(1979) : Phys. Rev., D 20, 3004.
[30] Yadav, R. B. S. et. al.(2008) : Anusandhan J. 16, 155
[31] Paul,B.C., Chattopadhyay, P.K.,Karmakar,S., Tikekar,
R. (2011): Mod.Phys, Lett., A 26, 575 .
[32] Pant, N., Maurya, S.K. (2012): Appl. Math. Comput.
218, 8260.
[33] Ratanpal, B.S., Thomas,V.O., Pandya,D.M.(2015):
arXiv:1502.01915[grqc]

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation