Full Paper View Go Back
Approximation of Reciprocal-Cubic Functional Equation in Non-Archimedean Normed Space
Nawneet Hooda1 , Shalini Tomar2
Section:Research Paper, Product Type: Isroset-Journal
Vol.5 ,
Issue.5 , pp.169-172, Oct-2018
CrossRef-DOI: https://doi.org/10.26438/ijsrmss/v5i5.169172
Online published on Oct 31, 2018
Copyright © Nawneet Hooda, Shalini Tomar . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Nawneet Hooda, Shalini Tomar, “Approximation of Reciprocal-Cubic Functional Equation in Non-Archimedean Normed Space,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.5, pp.169-172, 2018.
MLA Style Citation: Nawneet Hooda, Shalini Tomar "Approximation of Reciprocal-Cubic Functional Equation in Non-Archimedean Normed Space." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.5 (2018): 169-172.
APA Style Citation: Nawneet Hooda, Shalini Tomar, (2018). Approximation of Reciprocal-Cubic Functional Equation in Non-Archimedean Normed Space. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(5), 169-172.
BibTex Style Citation:
@article{Hooda_2018,
author = {Nawneet Hooda, Shalini Tomar},
title = {Approximation of Reciprocal-Cubic Functional Equation in Non-Archimedean Normed Space},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {10 2018},
volume = {5},
Issue = {5},
month = {10},
year = {2018},
issn = {2347-2693},
pages = {169-172},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=883},
doi = {https://doi.org/10.26438/ijcse/v5i5.169172}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i5.169172}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=883
TI - Approximation of Reciprocal-Cubic Functional Equation in Non-Archimedean Normed Space
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - Nawneet Hooda, Shalini Tomar
PY - 2018
DA - 2018/10/31
PB - IJCSE, Indore, INDIA
SP - 169-172
IS - 5
VL - 5
SN - 2347-2693
ER -
Abstract :
The aim of this paper is to study the stability of reciprocal-cubic functional equation using direct method in non-Archimedean normed spaces.
Key-Words / Index Term :
Generalized Hyers-Ulam stability, Reciprocal-cubic functional equation and non-archimedean normed spaces
References :
[1]. S. M. Ulam,Problems in Modern Mathematics, Science Editions, JohnWiley and Sons, New York, NY, USA,1964.
[2]. T. Aoki,On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn., vol. 2(1950),pp. 64-66.
[3]. H. Azadi Kenary, On the stability of a cubic functional equation in random normed spaces, J. Math. Ext., vol. 4, no. 1(2009), pp. 1 -11.
[4]. A Bodaghi,Y Ebrahimdoost, On the stability of quadratic reciprocal functional equation in non Archimedean fields. Asian-Eur. J. Math.,vol. 9,no. 1(2016), Article ID 1650002.
[5]. A Bodaghi,SO Kim, Approximation on the quadratic reciprocal functional equation. J. Funct. Spaces Appl. 2014, Article ID 532463.
[6]. A. Bodaghi,JM Rassias,C Park,Fundamental stabilities of an alternative quadratic reciprocal functional equation in non-Archimedean fields. Proc. Jangjeon Math. Soc. ,vol. 18, no.3(2015), pp. 313-320.
[7]. M. Eshaghi Gordji and M. B. Savadkouhi, Stability of mixed type cubic and quartic functional equations in random normed spaces, J. Inequal. Appl., 2009(2009), Article ID 527462, 9 pages.
[8]. Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci.,vol. 14 (1991),pp. 431-434.
[9]. P. Gavruta,A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,J. Math. Anal. Appl., vol. 184, no. 3(1994), pp. 431-436.
[10]. D. H. Hyers,On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, vol. 27, no. 4(1941), pp. 222-224.
[11]. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, Switzerland, 1998.
[12]. S.O. Kim,B.V. Senthil Kumar,A. Bodaghi, Approximation on the reciprocal-cubic and reciprocal-quartic functional equations in non-archimedean fields,Adv. Differ. Equ., (2017) 2017: 77.
[13]. Th. M. Rassias,On the stability of the linear mapping in Banach spaces,Proc. Amer. Math. Soc., vol. 72, no. 2(1978), pp. 297-300.
[14]. K. Ravi, J. M. Rassias and B. V. Senthil Kumar, Ulam stability of generalized reciprocal functional equation in several variables, Int. J. Appl. Math. Stat. 19(D10) (2010) 119.
[15]. K. Ravi, J. M. Rassias and B. V. Senthil Kumar, Ulam stability of reciprocal difference and adjoint funtional equations, Australian J. Math. Anal.Appl. 8(1) (2011), Article ID: 13, 118.
[16]. K Ravi,JM Rassias,BV Senthil Kumar,A Bodaghi, Intuitionistic fuzzy stability of a reciprocal-quadratic functional equation, Int. J. Appl. Sci. Math. vol. 1,no. 1(2014),pp. 9-14.
[17]. K. Ravi,B.V. Senthil Kumar, Ulam-Gavruta- Rassias stability of Rassias reciprocal functional equation. Glob. J. Appl. Math. Math. Sci.,vol. 3,no. 1-2(2010),pp. 57-79.
[18]. K. Ravi,S. Suresh,Generalized Hyers-Ulam Stability of a Cubic reciprocal Functional Equation,British Journal of Mathematics and Computer Sciencevol. 20,no. 6(2017),pp. 1-9
[19]. K Ravi,E Thandapani,BV Senthil Kumar,Stability of reciprocal type functional equations. Panam. Math. J. vol. 21,no. 1(2011), pp. 59-70.
[20]. K. Ravi, E. Thandapani, B.V. Senthil Kumar,Solution and stability of a reciprocal type functional equation in several variables,J. Nonlinear Sci. Appl., vol. 7 (2014),pp. 18-27.
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.