Full Paper View Go Back

On s-normal Circulant and con-s-normal Circulant Matrices

K. Rajesh Kannan1 , N. Elumalai2 , M. Kavitha3

Section:Research Paper, Product Type: Isroset-Journal
Vol.5 , Issue.5 , pp.173-178, Oct-2018


CrossRef-DOI:   https://doi.org/10.26438/ijsrmss/v5i5.173178


Online published on Oct 31, 2018


Copyright © K. Rajesh Kannan, N. Elumalai, M. Kavitha . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: K. Rajesh Kannan, N. Elumalai, M. Kavitha, “On s-normal Circulant and con-s-normal Circulant Matrices,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.5, pp.173-178, 2018.

MLA Style Citation: K. Rajesh Kannan, N. Elumalai, M. Kavitha "On s-normal Circulant and con-s-normal Circulant Matrices." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.5 (2018): 173-178.

APA Style Citation: K. Rajesh Kannan, N. Elumalai, M. Kavitha, (2018). On s-normal Circulant and con-s-normal Circulant Matrices. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(5), 173-178.

BibTex Style Citation:
@article{Kannan_2018,
author = {K. Rajesh Kannan, N. Elumalai, M. Kavitha},
title = {On s-normal Circulant and con-s-normal Circulant Matrices},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {10 2018},
volume = {5},
Issue = {5},
month = {10},
year = {2018},
issn = {2347-2693},
pages = {173-178},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=884},
doi = {https://doi.org/10.26438/ijcse/v5i5.173178}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i5.173178}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=884
TI - On s-normal Circulant and con-s-normal Circulant Matrices
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - K. Rajesh Kannan, N. Elumalai, M. Kavitha
PY - 2018
DA - 2018/10/31
PB - IJCSE, Indore, INDIA
SP - 173-178
IS - 5
VL - 5
SN - 2347-2693
ER -

458 Views    158 Downloads    154 Downloads
  
  

Abstract :
s-normal Circulant and con-s-normal circulant matrices are introduced and the basic roperties,results, consepts and structured theorems with examples are discussed in this paper

Key-Words / Index Term :
s-normal,con-s-normal,s-normaql circulant,con-s-normal circulant matrices.

References :
[1]. Elumalai.N, Rajesh kannan. K,” k-symmetric Circulant, s- symmetric Circulant and s- k symmetric Circulant Matrices”, Journal of Ultra Scientist of Physical Sciences, Vol.28(6),pp.322-327 (2016).
[2]. Elumalai.N, Rajesh kannan. K,” k-hermitian Circulant, s-hermitian Circulant and s- k hermitian Circulant Matrices”,Int. Journal of Mathematics & Statistics Invention, Vol.4(10), pp.22-28(2016)
3]. Elumalai.N, Rajesh kannan. K,” Some Properties of k−normal Circulant and con−k normal Circulant Matrices” Int. Journal of Pure and Applied Mathematics, Vol 113 (10), 2017, 308 – 316(2017)
[4] Febbender.H., Ikramov.H,”Conjucate Normal Matrices: A survey,” Linear Algebra and Appl.Vol.429 (2008).
[5].Hong-ping,M.A., Zheng-ke, MIAO,and Jiong-sheng,L.I.,2008,”Generalized normal Matrix”,Appl.Math.J.Chinese univ.,23(2),pp.240-244.
[6]. Horn, R.A., and Johnson,C.R., ,Matrix Analysis,Cambridge:Cambridge University press, Pp 79-482(1985)
[7]. Krishnamoorthy. S, Vijayakumar. R, On s-normal matrices, J.of Analysis and Computation, Vol 15, No 2, 2009
[8].Krishnamoorthy.S.and Subash.R.”On k-normal matrices “Int.J.of Math.Sci.&Engg.Appls Vol.5(2009).
[9]. Krishnamoorthy. S, Gunasekaran.K, Arumugam.K,” On con-k normal matrices” Int.J.of Current Research.Vol.4 (1).167- 169
[10].Penrose ,”A Generalized inverses for matrices”Proc.Cambridge Philos.soc.,Vol 51,406-413(1955).

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation