Full Paper View Go Back
On three Parameter Weighted Quasi Lindley Distribution: Properties and Applications
Anwar Hassan1 , Sameer Ahmad Wani2 , Bilal Ahmad Para3
Section:Research Paper, Product Type: Isroset-Journal
Vol.5 ,
Issue.5 , pp.210-224, Oct-2018
CrossRef-DOI: https://doi.org/10.26438/ijsrmss/v5i5.210224
Online published on Oct 31, 2018
Copyright © Anwar Hassan, Sameer Ahmad Wani , Bilal Ahmad Para . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Anwar Hassan, Sameer Ahmad Wani , Bilal Ahmad Para, “On three Parameter Weighted Quasi Lindley Distribution: Properties and Applications,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.5, pp.210-224, 2018.
MLA Style Citation: Anwar Hassan, Sameer Ahmad Wani , Bilal Ahmad Para "On three Parameter Weighted Quasi Lindley Distribution: Properties and Applications." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.5 (2018): 210-224.
APA Style Citation: Anwar Hassan, Sameer Ahmad Wani , Bilal Ahmad Para, (2018). On three Parameter Weighted Quasi Lindley Distribution: Properties and Applications. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(5), 210-224.
BibTex Style Citation:
@article{Hassan_2018,
author = {Anwar Hassan, Sameer Ahmad Wani , Bilal Ahmad Para},
title = {On three Parameter Weighted Quasi Lindley Distribution: Properties and Applications},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {10 2018},
volume = {5},
Issue = {5},
month = {10},
year = {2018},
issn = {2347-2693},
pages = {210-224},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=921},
doi = {https://doi.org/10.26438/ijcse/v5i5.210224}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i5.210224}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=921
TI - On three Parameter Weighted Quasi Lindley Distribution: Properties and Applications
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - Anwar Hassan, Sameer Ahmad Wani , Bilal Ahmad Para
PY - 2018
DA - 2018/10/31
PB - IJCSE, Indore, INDIA
SP - 210-224
IS - 5
VL - 5
SN - 2347-2693
ER -
Abstract :
In this paper, we have introduced a weighted model of the Quasi Lindley Distribution (QLD) as a new generalization of QLD. Statistical properties of this new distribution are derived and the model parameters are estimated by Maximum Likelihood (ML) estimation technique. Finally, the model is examined with an application to real life data.
Key-Words / Index Term :
Quasi Lindley Distribution, Weighted Probability Models, Reliability and Order Statistics, Strength Data
References :
[1]. Akaike, H. (1976). A new look at the statistical model identification. IEEE Trans. Autom.Control , 19 , 716–723.
[2]. Bader, M. G., & Priest, A. M. (1982). Statistical aspects of fiber and bundle strength in hybrid composites, In; hayashi T, Kawata K. Umekawa S (Eds.), Progress in Science in Engineering Composites, ICCM-IV Tokyo, 1129 -1136.
[3]. Fisher, R.A. (1934). The effects of methods of ascertainment upon the estimation of frequencies. Ann. Eugenics, 6, 13-25.
[4]. Gove, J. H. (2003). Environmental and Ecological Statistics, 10(4), 455-467. doi:10.1023/a:1026000505636
[5]. Gupta, R.C., & Tripathi, R.C. (1996). Weighted Bivariate Logarithmic Series Distribution. Communications in Statistics-Theory and Methods, 25(5), 1099-1117.
[6]. Para, B.A., & Jan, T. R. (2018). On three Parameter Weighted Pareto Type II Distribution: Properties and Applications in Medical Sciences. Applied Mathematics and Information Sciences Letters, 6 (1), 13-26.
[7]. Rao, C.R (1965). On discrete distributions arising out of method of ascertainment, in classical and Contagious Discrete, G.P. Patil .ed ;Pergamon Press and Statistical publishing Society, Calcutta, pp-320-332.
[8]. Raqab, M. Z., and Kundu, D. (2005). Comparison of different estimators of P(Y < X) for a scaled Burr Type X distribution. Communications in Statistcs – Simulation and Computation, 34, 465-483.
[9]. Schwarz, G. (1987). Estimating the dimension of a model. Ann. Stat., 5, 461–464.
[10]. Shanker, R., & Mishra, A. (2013). A quasi Lindley distribution. African Journal of Mathematics and Computer Science Research, 6(4), 64-71, DOI 10.5897/AJMCSR 12.067
[11]. Warren, W. G. (1975). Statistical Distributions in Forestry and Forest Products Research. A Modern Course on Statistical Distributions in Scientific Work, 369-384. doi:10.1007/978-94-010-1845-6_27
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.