Full Paper View Go Back
Reciprocal Fermat Number in Max- Min Matrices
N. Elumalai1 , R. Muthamizh Selvi2
Section:Research Paper, Product Type: Isroset-Journal
Vol.5 ,
Issue.6 , pp.102-108, Dec-2018
CrossRef-DOI: https://doi.org/10.26438/ijsrmss/v5i6.102108
Online published on Dec 31, 2018
Copyright © N. Elumalai, R. Muthamizh Selvi . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: N. Elumalai, R. Muthamizh Selvi, “Reciprocal Fermat Number in Max- Min Matrices,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.5, Issue.6, pp.102-108, 2018.
MLA Style Citation: N. Elumalai, R. Muthamizh Selvi "Reciprocal Fermat Number in Max- Min Matrices." International Journal of Scientific Research in Mathematical and Statistical Sciences 5.6 (2018): 102-108.
APA Style Citation: N. Elumalai, R. Muthamizh Selvi, (2018). Reciprocal Fermat Number in Max- Min Matrices. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(6), 102-108.
BibTex Style Citation:
@article{Elumalai_2018,
author = { N. Elumalai, R. Muthamizh Selvi},
title = {Reciprocal Fermat Number in Max- Min Matrices},
journal = {International Journal of Scientific Research in Mathematical and Statistical Sciences},
issue_date = {12 2018},
volume = {5},
Issue = {6},
month = {12},
year = {2018},
issn = {2347-2693},
pages = {102-108},
url = {https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=980},
doi = {https://doi.org/10.26438/ijcse/v5i6.102108}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v5i6.102108}
UR - https://www.isroset.org/journal/IJSRMSS/full_paper_view.php?paper_id=980
TI - Reciprocal Fermat Number in Max- Min Matrices
T2 - International Journal of Scientific Research in Mathematical and Statistical Sciences
AU - N. Elumalai, R. Muthamizh Selvi
PY - 2018
DA - 2018/12/31
PB - IJCSE, Indore, INDIA
SP - 102-108
IS - 6
VL - 5
SN - 2347-2693
ER -
Abstract :
Let T be a finite number of multiple set of real numbers taken as increasing order of numbers. The purpose of this article is to study the different properties of MIN matrix and MAX matrix of the set T with minimum and maximum numbers of set of ordered pairs. We are going to do this by interpreting these matrices as Reciprocal fermat max and min matrices and applying the determinant formulae and the inverse formulae for Reciprocal fermat MIN matrices and Reciprocal fermat MAX matrices.
Key-Words / Index Term :
MIN matrix, MAX matrix, meet matrix, join matrix, Fermat min matrix and Fermat max matrix, Reciprocal Fermat Min Matrix, Reciprocal Fermat Max Matrix
References :
[1]. Michal Křížek, Praha, Lawrence Somer, A necessary and sufficient condition for the Primality of fermat numbers, Mathematica Bohemica No. 3, 541–549, 2001.
[2]. H. Neudecker, G. Trenkler, and S. Liu, Problem section, Stat Papers 50, 221–223, 2009.
[3]. R. Bhatia, Infinitely divisible matrices, Amer. Math. Monthly 113 no. 3, 221–235, 2006.
[4]. R. Bhatia, Min matrices and mean matrices, Math. Intelligencer 33 no. 2, 22–28, 2011.
[5]. Crandall, R. E., Mayer, E., Papadopoulos, J.: The twenty-fourth Fermat number is composite, Math. Comp.
[6]. S. Puntanen, G. P. H. Styan, and J. Isotalo, Matrix Tricks for Linear Statistical Models -Our Personal Top Twenty, 1st ed.,Springer, 2011.
[7]. R.P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth and Brooks/Cole, 1986.
[8]. P. Haukkanen, On meet matrices on posets, Linear Algebra Appl. 249 , 111–123, 1996.
[9]. E. Altinisik, N. Tuglu, and P. Haukkanen, Determinant and inverse of meet and join matrices, Int. J. Math. Math. Sci. Article ID 37580, 2007.
[10]. M. Mattila and P. Haukkanen, Determinant and inverse of join matrices on two sets, Linear Algebra Appl. 438, 3891–3904, 2013.
[11]. Mika mattila and Pentti Haukkanen, Studying the various properties of MIN and MAX matrices-elementary vs. more advanced methods, Spec. Matrices , 4:101-109,2016.
[12]. Serife Buyukkose, The reciprocal mersenne meet matrices on posets, Int. J. Contemp. Math. Sci., Vol. 4, no. 1, 41-46, 2009.
[13]. B.S. Shetty, U.V. Kulkarni, Preetee, M. Sonule, ManishaN.Shinde, Fuzzy Hyper-line Segment Neural Network by using Association Rule Mining,JCSE, Vol.6 , Issue.12 , pp.25-31, Dec-2018
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.