References
[1] R. A. Knop et al., “New Constraints on ? M , ? ? , and w from an Independent Set of 11 High?Redshift Supernovae Observed with the Hubble Space Telescope,” Astrophys. J., vol. 598, no. 1, pp. 102–137, Nov. 2003, doi: 10.1086/378560.
[2] A. Clocchiatti et al., “ Hubble Space Telescope and Ground?based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications ,” Astrophys. J., vol. 642, no. 1, pp. 1–21, 2006, doi: 10.1086/498491.
[3] K. Krisciunas et al., “Hubble Space Telescope Observations of Nine High-Redshift Essence Supernovae,” Astron. J., vol. 130, no. 6, pp. 2453–2472, 2005, doi: 10.1086/497640.
[4] S. Perlmutter et al., “Measurements of ? and ? from 42 High?Redshift Supernovae,” Astrophys. J., vol. 517, no. 2, pp. 565–586, Jun. 1999, doi: 10.1086/307221.
[5] A. G. Riess et al., “Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope?: Evidence for Past Deceleration and Constraints on Dark Energy Evolution,” Astrophys. J., vol. 607, no. 2, pp. 665–687, Jun. 2004, doi: 10.1086/383612.
[6] B. P. Schmidt et al., “The High?Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae,” Astrophys. J., vol. 507, no. 1, pp. 46–63, Nov. 1998, doi: 10.1086/306308.
[7] S. Nobili et al., “Restframe I-band Hubble diagram for type la supernovae up to redshift z ? 0.5,” Astron. Astrophys., vol. 437, no. 3, pp. 789–804, 2005, doi: 10.1051/0004-6361:20042463.
[8] M. Cicoli, F. G. Pedro, and G. Tasinato, “Natural quintessence in string theory,” J. Cosmol. Astropart. Phys., vol. 2012, no. 07, pp. 044–044, Jul. 2012, doi: 10.1088/1475-7516/2012/07/044.
[9] C. Wetterich, “Inflation, quintessence, and the origin of mass,” Nucl. Phys. B, vol. 897, pp. 111–178, Aug. 2015, doi: 10.1016/j.nuclphysb.2015.05.019.
[10] S. Tsujikawa, “Quintessence: a review,” Class. Quantum Gravity, vol. 30, no. 21, p. 214003, Nov. 2013, doi: 10.1088/0264-9381/30/21/214003.
[11] M. Marciu, “Quintom dark energy with nonminimal coupling,” Phys. Rev. D, vol. 93, no. 12, p. 123006, Jun. 2016, doi: 10.1103/PhysRevD.93.123006.
[12] J. Sadeghi, B. Pourhassan, Z. Nekouee, and M. Shokri, “Deformation of the quintom cosmological model and its consequences,” Int. J. Mod. Phys. D, vol. 27, no. 03, p. 1850025, Feb. 2018, doi: 10.1142/S0218271818500256.
[13] A. El. Zant, W. El. Hanafy, and S. Elgammal, "H0 Tension and the Phantom Regime: A Case Study in Terms of an Infrared f (T) Gravity." The Astrophysical Journal, Vol. 871, No. 2, p. 210, 2019.
[13] A. El-Zant, W. El Hanafy, and S. Elgammal, “H0 Tension and the Phantom Regime: A Case Study in Terms of an Infrared f(T) Gravity,” Astrophys. J., vol. 871, no. 2, p. 210, Feb. 2019, doi: 10.3847/1538-4357/aafa12.
[14] G. Varshney, U. K. Sharma, and A. Pradhan, “Reconstructing the k-essence and the dilation field models of the THDE in f(R, T) gravity,” Eur. Phys. J. Plus, vol. 135, no. 7, p. 541, Jul. 2020, doi: 10.1140/epjp/s13360-020-00548-9.
[15] J. B. Orjuela-Quintana and C. A. Valenzuela-Toledo, “Anisotropic k-essence,” Phys. Dark Universe, vol. 33, p. 100857, Sep. 2021, doi: 10.1016/j.dark.2021.100857.
[16] A. Mohammadi, K. Saaidi, and T. Golanbari, “Tachyon constant-roll inflation,” Phys. Rev. D, vol. 97, no. 8, p. 083006, Apr. 2018, doi: 10.1103/PhysRevD.97.083006.
[17] S. Nojiri, S. D. Odintsov, V. K. Oikonomou, and T. Paul, “Unifying holographic inflation with holographic dark energy: A covariant approach,” Phys. Rev. D, vol. 102, no. 2, p. 023540, Jul. 2020, doi: 10.1103/PhysRevD.102.023540.
[18] S. H. Shekh, “Models of holographic dark energy in f(Q) gravity,” Phys. Dark Universe, vol. 33, p. 100850, Sep. 2021, doi: 10.1016/j.dark.2021.100850.
[19] S. Wang, Y. Wang, and M. Li, “Holographic dark energy,” Phys. Rep., vol. 696, pp. 1–57, Jun. 2017, doi: 10.1016/j.physrep.2017.06.003.
[20] S. D. Katore, S. V. Gore, and A. Y. Shaikh, “Holographic Dark Energy Cosmological Models in f(G) Theory,” New Astron., vol. 80, p. 101420, Oct. 2020, doi: 10.1016/j.newast.2020.101420.
[21] D. D. Pawar, R. V. Mapari, and P. K. Agrawal, “A modified holographic Ricci dark energy model in f (R, T) theory of gravity,” J. Astrophys. Astron., vol. 40, no. 2, p. 13, Apr. 2019, doi: 10.1007/s12036-019-9582-5.
[22] J.-F. Zhang, Y.-H. Li, and X. Zhang, “A global fit study on the new agegraphic dark energy model,” Eur. Phys. J. C, vol. 73, no. 1, p. 2280, Jan. 2013, doi: 10.1140/epjc/s10052-013-2280-6.
[23] A. Pourbagher and A. Amani, “Thermodynamics of the viscous f(T,B) gravity in the new agegraphic dark energy model,” Mod. Phys. Lett. A, vol. 35, no. 20, p. 2050166, Jun. 2020, doi: 10.1142/S0217732320501667.
[24] B. Pourhassan, “Viscous Modified Cosmic Chaplygin Gas Cosmology,” Int. J. Mod. Phys. D, vol. 22, no. 09, p. 1350061, Jul. 2013, doi: 10.1142/S0218271813500612.
[25] B. Pourhassan and E. O. Kahya, “Extended Chaplygin gas model,” Results Phys., vol. 4, pp. 101–102, 2014, doi: 10.1016/j.rinp.2014.05.007.
[26] E. O. Kahya and B. Pourhassan, “The universe dominated by the extended Chaplygin gas,” Mod. Phys. Lett. A, vol. 30, no. 13, p. 1550070, Apr. 2015, doi: 10.1142/S0217732315500704.
[27] J. P. Campos, J. C. Fabris, R. Perez, O. F. Piattella, and H. Velten, “Does Chaplygin gas have salvation?,” Eur. Phys. J. C, vol. 73, no. 4, p. 2357, Apr. 2013, doi: 10.1140/epjc/s10052-013-2357-2.
[28] P. P. Avelino, K. Bolejko, and G. F. Lewis, “Nonlinear Chaplygin gas cosmologies,” Phys. Rev. D, vol. 89, no. 10, p. 103004, May 2014, doi: 10.1103/PhysRevD.89.103004.
[29] M. Li, X.-D. Li, S. Wang, and Y. Wang, “Dark Energy,” Commun. Theor. Phys., vol. 56, no. 3, pp. 525–604, Sep. 2011, doi: 10.1088/0253-6102/56/3/24.
[30] A. G. Riess et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J., vol. 116, no. 3, pp. 1009–1038, Sep. 1998, doi: 10.1086/300499.
[31] S. Nojiri and S. D. Odintsov, “Unifying inflation with ?CDM epoch in modified gravity consistent with Solar System tests,” Phys. Lett. B, vol. 657, no. 4–5, pp. 238–245, Dec. 2007, doi: 10.1016/j.physletb.2007.10.027.
[32] R. Massey et al., “Dark matter maps reveal cosmic scaffolding,” Nature, vol. 445, no. 7125, pp. 286–290, Jan. 2007, doi: 10.1038/nature05497.
[33] R. Ferraro and F. Fiorini, “Modified teleparallel gravity: Inflation without an inflaton,” Phys. Rev. D - Part. Fields, Gravit. Cosmol., vol. 75, no. 8, pp. 1–5, Apr. 2007, doi: 10.1103/PhysRevD.75.084031.
[34] R. Ferraro and F. Fiorini, “Born-Infeld gravity in Weitzenböck spacetime,” Phys. Rev. D, vol. 78, no. 12, p. 124019, Dec. 2008, doi: 10.1103/PhysRevD.78.124019.
[35] G. R. Bengochea and R. Ferraro, “Dark torsion as the cosmic speed-up,” Phys. Rev. D, vol. 79, no. 12, p. 124019, Jun. 2009, doi: 10.1103/PhysRevD.79.124019.
[36] E. V. Linder, “Einstein’s other gravity and the acceleration of the Universe,” Phys. Rev. D, vol. 81, no. 12, p. 127301, Jun. 2010, doi: 10.1103/PhysRevD.81.127301.
[37] S. Capozziello, O. Luongo, R. Pincak, and A. Ravanpak, “Cosmic acceleration in non-flat f(T) cosmology,” Gen. Relativ. Gravit., vol. 50, no. 5, p. 53, May 2018, doi: 10.1007/s10714-018-2374-4.
[38] X. Ren, T. H. T. Wong, Y.-F. Cai, and E. N. Saridakis, “Data-driven reconstruction of the late-time cosmic acceleration with f(T) gravity,” Phys. Dark Universe, vol. 32, p. 100812, May 2021, doi: 10.1016/j.dark.2021.100812.
[39] S.-H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, “Cosmological perturbations in f(T) gravity,” Phys. Rev. D, vol. 83, no. 2, p. 023508, Jan. 2011, doi: 10.1103/PhysRevD.83.023508.
[40] J. B. Dent, S. Dutta, and E. N. Saridakis, “f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis,” J. Cosmol. Astropart. Phys., vol. 2011, no. 01, pp. 009–009, Jan. 2011, doi: 10.1088/1475-7516/2011/01/009.
[41] R. Zheng and Q.-G. Huang, “Growth factor in f(T) gravity,” J. Cosmol. Astropart. Phys., vol. 2011, no. 03, pp. 002–002, Mar. 2011, doi: 10.1088/1475-7516/2011/03/002.
[42] K. Bamba, R. Myrzakulov, S. Nojiri, and S. D. Odintsov, “Reconstruction of f(T) gravity: Rip cosmology, finite-time future singularities, and thermodynamics,” Phys. Rev. D, vol. 85, no. 10, p. 104036, May 2012, doi: 10.1103/PhysRevD.85.104036.
[43] M. Hamani Daouda, M. E. Rodrigues, and M. J. S. Houndjo, “Reconstruction of f(T) gravity according to holographic dark energy,” Eur. Phys. J. C, vol. 72, no. 2, p. 1893, Feb. 2012, doi: 10.1140/epjc/s10052-012-1893-5.
[44] W. El Hanafy and G. G. L. Nashed, “Reconstruction of f(T) -gravity in the absence of matter,” Astrophys. Space Sci., vol. 361, no. 6, 2016, doi: 10.1007/s10509-016-2786-0.
[45] Y.-F. Cai, M. Khurshudyan, and E. N. Saridakis, “ Model-independent Reconstruction of f ( T ) Gravity from Gaussian Processes ,” Astrophys. J., vol. 888, no. 2, p. 62, 2020, doi: 10.3847/1538-4357/ab5a7f.
[46] R. Myrzakulov, “Accelerating universe from F(T) gravity,” Eur. Phys. J. C, vol. 71, no. 9, p. 1752, Sep. 2011, doi: 10.1140/epjc/s10052-011-1752-9.
[47] R. Ferraro, “f(R) and f(T) theories of modified gravity,” AIP Conf. Proc., vol. 1471, no. 2012, pp. 103–110, 2012, doi: 10.1063/1.4756821.
[48] C. G. Böhmer, A. Mussa, and N. Tamanini, “Existence of relativistic stars in f(T) gravity,” Class. Quantum Gravity, vol. 28, no. 24, Dec. 2011, doi: 10.1088/0264-9381/28/24/245020.
[49] K. Pawar and A. K. Dabre, “Bulk Viscous String Cosmological Model with Constant Deceleration Parameter in Teleparallel Gravity,” vol. 10, no. 6, pp. 8–16, 2022, doi: https://doi.org/10.26438/ijsrpas/v10i6.816.
[50] K. Pawar, A. K. Dabre, and N. T. Katre, “Anisotropic String Cosmological Model for Perfect Fluid Distribution in f ( T ) Gravity,” vol. 10, no. 6, pp. 1–7, 2022, doi: https://doi.org/10.26438/ijsrpas/v10i6.17.
[51] Y. Zhang, H. Li, Y. Gong, and Z.-H. Zhu, “Notes on f(T) Theories,” Mar. 2011, doi: 10.1088/1475-7516/2011/07/015.
[52] B. Li, T. P. Sotiriou, and J. D. Barrow, “f(T) gravity and local Lorentz invariance,” Phys. Rev. D, vol. 83, no. 6, p. 064035, Mar. 2011, doi: 10.1103/PhysRevD.83.064035.
[53] M. Sharif and S. Rani, “VISCOUS DARK ENERGY IN f(T) GRAVITY,” Mod. Phys. Lett. A, vol. 28, no. 27, p. 1350118, Sep. 2013, doi: 10.1142/S0217732313501186.
[54] G. G. L. Nashed, “Anisotropic models with two fluids in linear and quadratic forms of f(T) gravitational theories,” Astrophys. Space Sci., vol. 357, no. 2, Jun. 2015, doi: 10.1007/s10509-015-2339-y.
[55] A. Y. Shaikh, “Stability and Cosmic Acceleration of the Cosmological Models in Teleparallel Gravity,” Bulg. J. Phys., vol. 49, no. 2, Apr. 2022, doi: 10.55318/bgjp.2022.49.2.190.
[56] G. G. L. Nashed and E. N. Saridakis, “Stability of motion and thermodynamics in charged black holes in f(T) gravity,” J. Cosmol. Astropart. Phys., vol. 2022, no. 05, p. 017, May 2022, doi: 10.1088/1475-7516/2022/05/017.
[57] R. Ferraro and M. J. Guzmán, “Hamiltonian formalism for f(T) gravity,” Phys. Rev. D, vol. 97, no. 10, p. 104028, May 2018, doi: 10.1103/PhysRevD.97.104028.
[58] S. Mandal and P. K. Sahoo, “On the temporal evolution of particle production in f(T) gravity,” Mod. Phys. Lett. A, vol. 35, no. 40, p. 2050328, Dec. 2020, doi: 10.1142/S0217732320503289.
[59] R. Ferraro and F. Fiorini, “Non-trivial frames for f(T) theories of gravity and beyond,” Phys. Lett. B, vol. 702, no. 1, pp. 75–80, Aug. 2011, doi: 10.1016/j.physletb.2011.06.049.
[60] C. Bejarano, R. Ferraro, and M. J. Guzmán, “McVittie solution in f(T) gravity,” Eur. Phys. J. C, vol. 77, no. 12, p. 825, Dec. 2017, doi: 10.1140/epjc/s10052-017-5394-4.
[61] Ö. Akarsu and C. B. K?l?nç, “Bianchi type III models with anisotropic dark energy,” Gen. Relativ. Gravit., vol. 42, no. 4, pp. 763–775, Apr. 2010, doi: 10.1007/s10714-009-0878-7.
[62] A. G. Cohen, D. B. Kaplan, and A. E. Nelson, “Effective Field Theory, Black Holes, and the Cosmological Constant,” Phys. Rev. Lett., vol. 82, no. 25, pp. 4971–4974, Jun. 1999, doi: 10.1103/PhysRevLett.82.4971.
[63] L. Susskind, “The world as a hologram,” J. Math. Phys., vol. 36, no. 11, pp. 6377–6396, Nov. 1995, doi: 10.1063/1.531249.
[64] L. N. Granda and A. Oliveros, “Infra-red cut-off proposal for the holographic density”, Physics Letters B, vol. 669, no. 5, pp. 275-277, 2008, doi: 10.1016/j.physletb.2008.10.017.
[65] M. R. Setare, “The Holographic Dark Energy in Non-Flat Brans-Dicke Cosmology”, Physics Letters B, vol. 644, no. 2-3, pp. 99-103, 2007, doi: 10.1016/j.physletb.2006.11.033.
[66] M. R. Setare, “Holographic tachyon model of dark energy", Physics Letters B, vol. 653, no. 2-4, pp.116-121, 2007, doi: 10.1016/j.physletb.2007.08.011.
[67] K. S. Adhao, G. B. Tayade & A. S. Bansod, “Interacting dark matter and holographic dark energy in an anisotropic universe”, Astrophys Space Sci,, 2014, doi: 10.1007/s10509-014-2015-7.
[68] V. R. Chirde and S. H. Shekh, “Dynamic minimally interacting holographic dark energy cosmological model in f(T) gravity,” Indian J. Phys., vol. 92, no. 11, pp. 1485–1494, Nov. 2018, doi: 10.1007/s12648-018-1236-y.
[69] V. G. Mete, D. Elkar, & P. Kadu, “Holographic Dark Energy Cosmological Model in Scalar Tensor Theory of Gravitation”, New Horizons in Mathematical Physics, Vol. 1, No. 2, pp. 49-55, September 2017, doi: 10.22606/nhmp.2017.12003.
[70] V. C. Dubey, U. K. Sharma, & A. Al Mamon, “Interacting Rényi Holographic Dark Energy in the Brans-Dicke Theory”, Advances in High Energy Physics 2021, , pp. 1-17 , 2021, doi: 10.1155/2021/6658862.
[71] S. H. Shekh & K. Ghaderi, “Hypersurface-homogeneous space-time with interacting holographic model of dark energy with Hubble’s and Granda-Oliveros IR cut-off”, Physics of the Dark Universe, vol. 31 , pp.100785, 2021, doi: 10.1016/j.dark.2021.100785.