Volume-11 , Issue-3 , Jun 2023, ISSN 2348-3423 (Online) Go Back
-
Open Access Article
Annealing Induced Coercivity in Cobalt-ferrite Nanoparticles Prepared by Coprecipitation Method
D. Pal
Research Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.3 , pp.1-5, Jun-2023
Abstract
Cobalt-ferrite magnetic nanoparticles of particle size/crystallite size of about 50 nm were prepared by the coprecipitation method. Structural analysis of the particles was done by XRD measurement and the magnetic hysteresis measurements were performed by a VSM. All the measurements were performed at room temperature. The crystallite size of particles was estimated by using Debye Scherrer’s formula. The synthesized particles were annealed at different temperatures to study the variation of particle size with annealing temperature. The crystallinity of the particles was improved with the increase in annealing temperature. The dependence of the coercivity of the nanoparticles with particle size was also investigated in this article.Key-Words / Index Term
Cobalt ferrite nanoparticle, crystallite size, Coercivity, Magnetocrystalline anisotropy, Annealing, Coprecipitation Method.References
[1] M. Sun, B. Sun, Y. Liu, Q. D. Shen, and S. Jiang, “Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes,” Scientific Reports, Vol. 6, No. 22368, 2016.
[2] P. Montazersaheb, E. Pishgahzadeh, V. B. Jahani, R. Farahzadi, and S. Montazersaheb, “Magnetic nanoparticle-based hyperthermia: A prospect in cancer stem cell tracking and therapy,” Life Sciences, Vol. 325, p. 121714, 2023.
[3] P. Xue, L. Sun, Q. Li, L. Zhang, J. Guo, Z. Xu, Y. Kang, “PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells,” Colloids and Surfaces B: Biointerfaces, Vol. 160, pp. 11-21, 2017.
[4] E. J. Ngen, B. B. Azad, S. Boinapally, A. Lisok, M. Brummet, D. Jacob, M. G. Pomper, and S. R. Banerjee, “MRI Assessment of Prostate-Specific Membrane Antigen (PSMA) Targeting by a PSMA-Targeted Magnetic Nanoparticle: Potential for Image-Guided Therapy,” Molecular pharmaceutics, Vol. 16, Issue 5, pp. 2060–2068, 2019.
[5] M. M. Goswami, “Synthesis of Micelles Guided Magnetite (Fe3O4) Hollow Spheres and their application for AC Magnetic Field Responsive Drug Release,” Scientific Reports, Vol. 6 No. 35721, 2016.
[6] D. Pal, D. De, A. Das, A. Chaudhuri, M. M. Goswami, “Synthesis of Micelles Guided Co-Ferrite Particles and Their Application for AC Magnetic Field Stimulated Drug Release,” Journal of Advanced Scientific Research, Vol. 11, No. 3, pp. 170-175, 2020.
[7] J. Jacob, and M. A. Khadar, “Investigation of mixed spinel structure of nanostructured nickel ferrite,” Journal of Applied Physics, Vol. 107, p. 114310, 2010.
[8] C. Klewe, M. Meinert, A. Boehnke, K. Kuepper, E. Arenholz, A. Gupta, J.-M. Schmalhorst, T. Kuschel, and G. Reiss, “Physical characteristics and cation distribution of NiFe2O4 thin films with high resistivity prepared by reactive co-sputtering,” Journal of Applied Physics, Vol. 115, p. 123903, 2014.
[9] M. Peda, P. S. Anil Kumar, “Magnetic and electrical transport properties of Ru doped cobalt ferrite thin films with perpendicular magnetic anisotropy,” AIP Advances, Vol. 11, p. 015346, 2021.
[10] Q. Dai, D. Berman, K. Virwani, J. Frommer, P. O. Jubert, M. Lam, T. Topuria, W. Imaino, and A. Nelson, “Self-Assembled Ferrimagnet?Polymer Composites for Magnetic Recording Media,” Nano Letters, Vol. 10, Issue 8, pp. 3216-3221, 2010.
[11] S. Hazra, N. N. Ghosh, “Preparation of Nanoferrites and Their Applications,” Journal of Nanoscience and Nanotechnology, Vol. 14, No. 2, pp. 1983-2000, 2014.
[12] A. K. Gupta, M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials, Vol. 26, No. 18, pp. 3995-4021, 2005.
[13] S. Ge, X. Shi, K. Sun, C. Li, C. Uher, J. R. Baker, Jr., M. M. Banaszak Holl, and B. G. Orr, “Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties,” The Journal of Physical Chemistry C, Vol. 113, No. 31, pp. 13593–13599, 2009.
[14] M. Houshiar, F. Zebhi, Z. J. Razi, A. Alidoust, Z. Askari, “Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties,” Journal of Magnetism and Magnetic Materials, Vol. 371, pp. 43–48, 2014.
[15] L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, “Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications,” Chemical Reviews, Vol. 112, pp. 5818?5878, 2012.
[16] P. Guardia, A. Labarta, X. Batlle, “Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles,” The Journal of Physical Chemistry C, Vol. 115, No. 2, pp. 390–396, 2011.
[17] D. Pal, “Magnetic Nanoparticles in Various Biomedical Applications,” Journal of Advanced Scientific Research, Vol. 13, No. 8, pp. 1-6, 2022.
[18] C. Nayek, K. Manna, G. Bhattacharjee, P. Murugavel, I. Obaidat, “Investigating Size- and Temperature-Dependent Coercivity and Saturation Magnetization in PEG Coated Fe3O4 Nanoparticles,” Magnetochemistry, Vol. 3, Issue 2, p. 19, 2017.
[19] Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, “Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles,” Scientific Reports, Vol. 7, No. 9894, 2017.
[20] B. D. Cullity, “Introduction to Magnetic Material,” 2nd ed. London: Addison-Wesley; 1972.
[21] I. Sharifi, H. Shokrollahi, and S. Amiri, “Ferrite-based magnetic nanofluids used in hyperthermia applications,” Journal of Magnetism and Magnetic Materials, Vol. 324, Issue 6, pp. 903-915, 2012.
[22] W. Kachi, A. M. Al-Shammari, I. G. Zainal, “Cobalt Ferrite Nanoparticles: Preparation, characterization and salinized with 3-aminopropyl triethoxysilane,” Energy Procedia, Vol. 157, pp. 1353-1365, 2019.
[23] L. T. Lu, N. T. Dung, L. D. Tung, C. T. Thanh, O. K. Quy, N. V. Chuc, S. Maenosono, and N. T. K. Thanh, “Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions,” Nanoscale, Vol. 7, pp. 19596–19610, 2015.
[24] K. Sone, S. Sekiguchi, H. Naganuma, T. Miyazaki, T. Nakajima, S. Okamura, “Magnetic properties of CoFe2O4 nanoparticles distributed in a multiferroic BiFeO3 matrix,”Journal of Applied Physics, Vol. 111, p. 124101, 2012.
[25] H. M. Joshi, Y. P. Lin, M. Aslam, P. V. Prasad, E. A. Schultz-Sikma, R. Edelman, T. Meade, and V. P. Dravid, “Effects of Shape and Size of Cobalt Ferrite Nanostructures on Their MRI Contrast and Thermal Activation,” The Journal of Physical Chemistry C, Vol. 113, pp. 17761–17767, 2009.
[26] C. Dey, A. Ghosh, M. Ahir, A. Ghosh, and M. M. Goswami, “Improvement of Anticancer Drug Release by Cobalt Ferrite Magnetic Nanoparticles through Combined pH and Temperature Responsive Technique,” ChemPhysChem, Vol. 19, Issue 21, pp. 2872-2878, 2018.
[27] C. Dey, K. Baishya, A. Ghosh, M. M. Goswami, A. Ghosh, K. Mandal, “Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles,” Journal of Magnetism and Magnetic Materials, Vol. 427, pp. 168-174, 2017.
[28] A. Das, D. De, A. Ghosh, M. M. Goswami, “DNA engineered magnetically tuned cobalt ferrite for hyperthermia application,” Journal of Magnetism and Magnetic Materials, Vol. 475, pp. 787-793, 2019.
[29] P. H. Nam, L. T. Lu, P. H. Linh, D. H. Manh, L. T. T. Tam, N. X. Phuc, P. T. Phong, and I. J. Lee, Polymer-coated cobalt ferrite nanoparticles: synthesis, characterization, and toxicity for hyperthermia applications,” New Journal of Chemistry, Vol. 42, pp. 14530-14541, 2018.
[30] A. Benali, L. Saher, M. Bejar, E. Dhahri, M. F. P. Graca, M. A. Valente, P. Sanguino, L. A. Helguero, K. Bachari, Artur M. S. Silva, and B. F. O. Costa, “Synthesis and physico-chemical characterization of Bi-doped Cobalt ferrite nanoparticles: cytotoxic effects against breast and prostate cancer cell lines,” The European Physical Journal Plus, Vol. 137, No. 559, 2022.
[31] A. López-Ortega, E. Lottini, C. de Julián Fernández, C. Sangregorio, “Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of rare-earth-free permanent magnet,” Chemistry of Materials, Vol. 27, Issue 11, pp. 4048-4056, 2015.
[32] A. Benali, L. Saher, M. Bejar, et al., “CoFe2O4 spinel ferrite studies on permanent magnet application and cytotoxic effects on breast and prostate cancer cell lines,” Journal of Materials Science: Materials in Electronics, Vol. 34, No. 53, 2023.
[33] E. Suharyadi, S. H. Pratiwi, I. P. T. Indrayana, T. Kato, S. Iwata, and K. Ohto, “Effects of annealing temperature on microstructural, magnetic properties, and specific absorption rate of Zn-Ni ferrite nanoparticles,” Materials Research Express, Vol. 8, No. 3, p. 036101, 2021.
[34] C. N. Chinnasamy, M. Senoue, B. Jeyadevan, Oscar Perales-Perez, K. Shinoda, and K. Tohji, “Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio,” Journal of Colloid and Interface Science, Vol. 263, pp. 80–83, 2003.
[35] S. Amiri, H. Shokrollahi, “The role of cobalt ferrite magnetic nanoparticles in medical science,” Materials Science and Engineering C, Vol. 33, pp. 1–8, 2013.
[36] R. B. Kamble, V. Varade, K. P. Ramesh, and V. Prasad, “Domain size correlated magnetic properties and electrical impedance of size dependent nickel ferrite nanoparticles,” AIP Advances, Vol. 5, p. 017119, 2015.
[37] J. S. Lee, J. M. Cha, H. Y. Yoon, J-K. Lee, and Y. K. Kim, “Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity,” Scientific Reports, Vol. 5, No. 12135, 2015.
[38] R. H. Kodama, A. E. Berkowitz, E. J. McNiff, Jr. and S. Foner, “Surface Spin Disorder in NiFe2O4 Nanoparticles,” Physical Review Letters, Vol. 77, No. 2, 1996.Citation
D. Pal, "Annealing Induced Coercivity in Cobalt-ferrite Nanoparticles Prepared by Coprecipitation Method," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.3, pp.1-5, 2023 -
Open Access Article
D.B. Mankad, H.O. Jethva, H. Bhuva, V.J. Pandya
Research Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.3 , pp.6-12, Jun-2023
Abstract
The current paper discusses a study which is related to the growth and several characterizations of pure compound crystals of nickel sulphate heptahydrate (NSH) and potassium dihydrogen citrate (KDC) is reported. The crystals under study were grown at room temperature by the technique of slow solvent evaporation. After the duration of 6 weeks, good quality, square and rod-shaped crystals were found to have grown. Characterization of crystals was carried out by doing elemental, FTIR and optical analysis. The changes in the characteristics of pure NSH crystal and pure KDC crystal were compared with the compound crystal and discussed accordingly. The elemental analysis confirmed the presence of respective atoms of pure NSH and pure KDC in the grown product crystal. The FTIR spectroscopic analysis indicated the presence of functional groups of sulphate of NSH and characteristic vibrations of dihydrogen citrate in the compound crystal. The SHG analysis showed that pure as well as compound crystals of NSH and KDC did not possess the NLO property. The energy band gaps of pure and compound crystals of NSH and KDC were evaluated by using the KM function. The result showed an elevation in the value of the energy band gap in the value of pure KDC as it formed the compound with NSH. All the results are discussed.Key-Words / Index Term
NSH, KDC, FTIR, elemental analysis, FTIR, SHG, energy band gapReferences
[1] E. S. Dana, W. E. Ford, “Crystallography and Physical Mineralogy”, Wiley Eastern Limited, pp. 760, 1985.
[2] N. D. Pandya, J. H. Joshi, M. J. Joshi, D. K. Kanchan, Y. H. Gandhi, H. O. Jethva, “Effect of Cr+3 on growth, thermal, photoluminescence and electrical properties of potassium dihydrogen citrate single crystal”, Mater. Res. Express, Vol. 6, pp.086324, 2019.
[3] S. Nalini Jayanthi, A. R. Prabhakaran, D. Subashini, K. Thamizharasan, “Crystallisation and Characterisation of NLO Active Glycine Copper Sulphate Crystals, ”CHALCOGENIDE LETTER., Vol.11, Issue 5, pp.241-247, 2014.
[4] Natarajan Nithya, Raman Mahalakshmi, Suresh Sagadevan, “Investigation on Physical Properties of semiorganic nonlinear optical zinc sulphate single crystal”, Journal of Material Research, Vol. 18, Issue 3, pp. 581-587, 2015.
[5] A. Chitra, J. Madhavan, “Growth, Structural, Thermal and Dielectric Studies of Glycine Zinc Sulphate Single Crystals”, International Journal of Engineering Development and Research, Vol. 3(4), pp.350-353, 2015.
[6] D.B. Mankad, M. J. Joshi, H. O. Jethva, “Growth and characterization of compound crystal of magnesium sulphate heptahydrate and threonine”, Int. J. Sci. Res. in Physics and Applied Sciences, Vol. 10(3), pp.42-48, 2022.
[7] Alaa R. Tuama, Tagreed M. Al-Saadi, “Study the Structural and Optical Properties of Magnesium Sulphate Heptahydrate Single Crystal Grown by Solution Growth Method”, Energy Procedia, Vol.157, pp.709, 2019.
[8] Fernando Ovalles, Maximo Gallignani, Rebeca Rondon, Maria Brunetto, Rafael Luna, “Determination of sulfate for measuring magnesium sulfate in pharmaceuticals by flow analysis- Fourier Transform Infrared Spectroscopy”, Latin American Journal of Pharmaceutics, Vol.28, Issue 2, pp.173-182, 2009.
[9] P. Kathiravan, T. Balakrishnan, C. Srinath, K. Ramamurthi, S. Thamotharan, “Growth and characterization of ?-nickel sulfate hexahydrate single crystal”, Karbala International Journal of Modern Science, Vol. 2, pp.226-238, 2016.
[10] John Coates, Interpretation of Infrared Spectra, A Practical Approach, John Wiley & Sons, Chichester, Encyclopedia of Analytical Chemistry, 2000.
[11] Etalo A. Secco, “Spectroscopic properties of SO4 (and OH) in different molecular and crystalline environments. Infrared spectra of Cu4(OH)6SO4, Cu4(OH)4OSO4 and Cu3(OH)4SO4 ”, Canadian Journal of Chemistry, Vol.66, pp.329, 1988.
[12] J. K. Saha, J. Podder, “Crystallisation of zinc sulphate single crystals and its structural, thermal and optical characterization”, Journal of Bangladesh Academy Science, Vol.35, Issue 2, pp.203, 2011.
[13] G. Aruldhas, “Molecular Structure and Spectroscopy”, PHI Pvt. Ltd., New Delhi, 2001.
[14] G. R. Chatwal, S. K. Anand, “Spectroscopy (Atomic and Molecular)”, Himalaya Publishing House, Mumbai , 2010.
[15] M. Zahan, J. Podder, “Surface morphology, optical properties and Urbach tail of spray deposited Co3O4 thin films”, J. Mater. Sci.: Mater. Electron., Vol. 30, pp.4259-4269, 2019.
[16] S. K. Sen, T. C. Paul, M. S. Manir, S. Dutta, M. N. Hossain, J. Podder, “Effect of Fe doping and post-annealing temperature on the structural and optical properties of MoO3 nanosheets”, J. Mater. Sci.: Mater. Electron., Vol. 30, pp.14355-14367, 2019.
[17] M. Suriya, M. Manimaran, B. Milton Boaz, K. Sakthi Murugesan, “Investigation on the optical, spectral, electrical, mechanical and laser damage threshold studies of bis (4-acetylanilinium) tetrachloridozincate crystal”, J. Mater. Sci.: Mater. Electron., Vol. 32, pp.11393-11417, 2021.
[18] P. Jayaprakash, M. Peer Mohamed, M. Lydia Caroline, “Growth, spectral and optical characterization of a novel nonlinear optical organic material: d-Alanine dl-Mandelic acid single crystal”, J. Mo. Struct., Vol. 1134, pp.67-77, 2017.
[19] P. A. Ilenikhena, “Optical characterization and possible solar energy applications of improved solution grown cobalt oxide thin films at 300K”, Afr. Phys. Rev., Vol. 2, pp.68-77, 2008.Citation
D.B. Mankad, H.O. Jethva, H. Bhuva, V.J. Pandya, "Elemental, FTIR and Optical analysis of compound crystal of nickel sulphate heptahydrate and potassium dihydrogen citrate," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.3, pp.6-12, 2023 -
Open Access Article
A Short Review of Magnetocaloric Effect in Ni-Mn-Ga Heusler Alloy System
D. Pal
Review Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.3 , pp.13-20, Jun-2023
Abstract
Magnetic refrigeration that utilizes the magnetocaloric effect (MCE) of a material is considered a promising substitute to the conventional gas-compression/expansion cooling technology owing to its advantages, such as environmental friendliness, cost-effectiveness, etc. For the potential application of this technology, low-cost and highly efficient magnetocaloric materials are in great need as magnetic refrigerants. The geometry of the magnetocaloric materials also becomes important for cooling in (nano)macro devices and it demands a very small size. In search of prospective magnetocaloric material Ni-Mn-based ferromagnetic Heulser alloys are of great interest for their potential to achieve large/giant magnetic entropy change at magneto-structural transition. This review article comprises an overview of the magnetocaloric effect in the ferromagnetic Ni-Mn-Ga Heusler alloy system. MCE in these alloys in various low/reduced dimensions such as ribbons, microwires and thin films are also outlined. Recent development in this field along with previous works have been reviewed in a systematic manner. The present difficulties/limitations and remaining challenges in this field have also been discussed in this article.Key-Words / Index Term
Heusler alloy, Martensitic transition, Magnetic entropy, Magnetocaloric effect, Microwires, Ribbons, Thin films.References
[1] H. Y. Nguyen, X. H. Kieu, H. N. Nguyen, T. T. Pham, T. D. Thanh, Q. N. Le and H. D. Nguyen, “Structure and magnetic properties of Ni–Mn–Ga shape memory alloys,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 13, p. 015014, 2022.
[2] D. Pal and K. Mandal, “Magnetocaloric effect and magnetoresistance of Ni–Fe–Ga alloys,” Journal of Physics D: Applied Physics, Vol. 43, p. 455002, 2010.
[3] L. Manosaa, A. Planes, M. Acet, E. Duman, E. F. Wassermann, “Magnetic shape memory in Ni–Mn–Ga and Ni–Mn–Al,” Journal of Magnetism and Magnetic Materials, Vol. 272–276, pp. 2090–2092, 2004.
[4] K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, and K. Isshida, “Promising ferromagnetic Ni-Co-Al shape memory alloy system,” Applied Physics Letters, Vol. 79, pp. 3290-3292, 2001.
[5] D. Pal, A. Ghosh, and K. Mandal, “Large inverse magnetocaloric effect and magnetoresistance in nickel rich Ni52Mn34Sn14 Heusler alloy,” Journal of Magnetism and Magnetic Materials, Vol. 360, pp. 183-187, 2014.
[6] X.-Z. Li, W.-Y. Zhang, S. Valloppilly, and D. J. Sellmyer, “New Heusler compounds in Ni-Mn-In and Ni-Mn-Sn alloys,” Scientific Reports, Vol. 9, No. 7762, 2019.
[7] V. A. L`vov, A. Kosogor, J. M. Barandiaran, V. A. Chernenko, “Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior,” Journal of Applied Physics, Vol. 119, p. 013902, 2016.
[8] K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V. Kokorin, “Large magnetic?field?induced strains in Ni2MnGa single crystals,” Applied Physics Letters, Vol. 69, pp. 1966-1968, 1996.
[9] G. H. Wu, C. H. Yu, L. Q. Meng, J. L. Chen, F. M. Yang, S. R. Qi, W. S. Zhan, Z. Wang, Y. F. Zheng, and L. C. Zhao, “Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition,” Applied Physics Letter, Vol. 75, pp. 2990-2992, 1999.
[10] F. X. Hu, B. G. Shen, J. R. Sun, and G. H. Wu, “Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal,” Physical Review B, Vol. 64, p. 132412, 2001.
[11] M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso, and D. Schlagel, “Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals,” Physical Review B, Vol. 72, p. 094435, 2005.
[12] D. Pal, K. Mandal, and O. Gutfleisch, “Large negative magnetoresistance in nickel-rich Ni–Mn–Ga Heusler alloys,” Journal of Applied Physics, Vol. 107, p. 09B103, 2010.
[13] D. Pal, “Magnetocaloric and Magneto-transport Properties in Polycrystalline Ni56Mn20Ga24 Heusler Alloy,” Journal of Scientific Research, Vol. 15, No. 2, pp. 361-370, 2023.
[14] V. O. Golub, V. A. Chernenko, A. Apolinario, I. R. Aseguinolaza, J. P. Araujo, O. Salyuk, J. M. Barandiaran and G. N. Kakazei, “Negative Magnetoresistance in Nanotwinned NiMnGa Epitaxial Films,” Scientific Reports, Vol. 8, No. 15730, 2018.
[15] M. Qian, X. Zhang, L. Wei, P. Martin, J. Sun, L. Geng, T. B. Scott, and Hua-Xin Peng, “Tunable Magnetocaloric Effect in Ni-Mn-Ga Microwires,” Scientific Reports, Vol. 8, No. 16574, 2018.
[16] Y.S. Koshkidko, E.T. Dilmieva, A. P. Kamantsev, J. Cwik, K. Rogacki, A. V. Mashirov, V. V. Khovaylo, C. S. Mejia, M. A. Zagrebin, V. V. Sokolovskiy, V. D. Buchelnikov, P. Ari-Gur, P. Bhale, V. G. Shavrov, V. V. Koledov, “Magnetocaloric effect and magnetic phase diagram of Ni-Mn-Ga Heusler alloy in steady and pulsed magnetic fields,” Journal of Alloys and Compounds, Vol. 904, p. 164051, 2022.
[17] G. Porcari, F. Cugini, S. Fabbrici, C. Pernechele, F. Albertini, M. Buzzi, M. Mangia, and M. Solzi, “Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: The case of Ni-Co-Mn-Ga Heusler alloys,” Physical Review B, Vol. 86, p. 104432, 2012.
[18] J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, “Giant magnetocaloric effect driven by structural transitions,” Nature Materials, Vol. 11, pp. 620-626, 2012.
[19] Y. H. Qu, D. Y. Cong, X. M. Sun, Z. H. Nie, W. Y. Gui, R. G. Li, Y. Ren, Y. D. Wang, “Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys,” Acta Materialia, Vol. 134, pp. 236–248, 2017.
[20] D. Y. Cong, L. Huang, V. Hardy, D. Bourgault, X. M. Sun, Z. H. Nie, M. G. Wang, Y. Ren, P. Entel, Y. D. Wang, “Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy,” Acta Materialia, Vol. 146, pp. 142–151, 2018.
[21] Y. Qu, A. Gràcia-Condal, L. Mañosa, A. Planes, D. Cong, Z. Nie, Y. Ren, Y. Wang, “Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy,” Acta Materialia, Vol. 177, pp. 46-55, 2019.
[22] C. Liu, Z. Li, Y. Zhang, Y. Liu, J. Sun, Y. Huang, B. Kang, K. Xu, D. Deng, C. Jing, “Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn48?xCuxNi42Sn10 Heusler alloys,” Physica B: Condensed Matter, Vol. 508, pp. 118–123, 2017.
[23] Y. Feng, J.H. Sui, L. Chen, W. Cai, “Martensitic transformation behaviors and magnetic properties of Ni–Mn–Ga rapidly quenched ribbons,” Materials Letters, Vol. 63, pp. 965-968, 2009.
[24] P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modelling the phase diagram of magnetic shape memory Heusler alloys,” Journal of Physics D: Applied Physics, Vol. 39, p. 865, 2006.
[25] V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Savrov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, “Phase transitions in Ni2+xMn1?xGa with a high Ni excess,” Physical Review B, Vol. 72, p. 224408, 2005.
[26] A. Planes, L.Mañosa, A. Saxena, Magnetism and Structure in Functional Materials, Springer-Verlag, berlin Heidelberg, 2005, ISBN: 978-3-540-31631-2
[27] S. Stadler, M. Khan, J. Mitchell, N. Ali, A. M. Gomes, I. Dubenko, A. Y. Takeuchi, A. P. Guimarães, “Magnetocaloric properties of Ni2Mn1?xCuxGa,” Applied Physics Letters, Vol. 88, p. 192511, 2006.
[28] J. Pons, R. Santamarta, V. A. Chernenko, E. Cesari, “Structure of the layered martensitic phases of Ni–Mn–Ga alloys,” Materials Science and Engineering: A, Vol. 438–440, pp. 931-934, 2006.
[29] J. Pons, V. A. Chernenko, R. Santamarta and E. Cesari, “Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys,” Acta Materialia, Vol. 48, pp. 3027-3038, 2000.
[30] N. Hassan, I. A. Shah, J. Liu, G. Xu, Y. Gong, X. Miao, F. Xu, “Magnetostructural Coupling and Giant Magnetocaloric Effect in Off-Stoichiometric MnCoGe Alloys,” Journal of Superconductivity and Novel Magnetism, Vol. 31, pp. 3809–3815, 2018.
[31] Z. Li, Y. Zhang, C. F. Sanchez-Valdes, J. L. Sanchez Llamazares, C. Esling, X. Zhao, and L. Zuo, “Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation,” Applied Physics Letters, Vol. 104, p. 044101, 2014.
[32] R. Zuberek, O. M. Chumak, A. Nabia?ek, M. Chojnacki, I. Radelytskyi, H. Szymczak, “Magnetocaloric effect and magnetoelastic properties of NiMnGa and NiMnSn Heusler alloy thin films,” Journal of Alloys and Compounds, Vol. 748, pp. 1-5, 2018.
[33] D. Pal, “Conventional and Inverse Magnetocaloric Effect in Ni-Rich Ni-Mn-Ga and Ni-Mn-Sn Heusler Alloy: A Comparison”, Journal of Scientific Research, Vol. 12, No. 3, pp. 303–310, 2020.
[34] H. Sun, C. Jing, H. Zeng, Y. Su, S. Yang, Y. Zhang, et. al. “Martensitic Transformation, Magnetic and Mechanical Characteristics in Unidirectional Ni–Mn–Sn Heusler Alloy,” Magnetochemistry, Vol. 8, p. 136, 2022.
[35] D. Pal and K. Mandal, “Magnetic and Magneto-Transport Properties of Nickel-Rich Ni–Mn–Ga Heusler Alloys,” Japanese Journal of Applied Physics, Vol. 49, p. 073002, 2010.
[36] A. Planes, L. Manosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” Journal of Physics: Condensed Matter, Vol. 21, p. 233201, 2009.
[37] J. Marcos, L. Manosa, A. Planes, F. Casanova, X. Batlle, and A. Labarta, “Multiscale origin of the magnetocaloric effect in Ni-Mn-Ga shape-memory alloys,” Physical Review B, Vol. 68, p. 094401, 2003.
[38] F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra, and L. Righi, “Composition and temperature dependence of the magnetocrystalline anisotropy in Ni2+xMn1+yGa1+z?(x+y+z=0) Heusler alloys,” Applied Physics Letters, Vol. 81, pp. 4032–4034, 2002.
[39] A. Planes, L. Manosa, X. Moya, J. Marcos, M. Acet, T. Krenke, S. Aksoy, and E. F. Wassermann, “Magnetocaloric and Shape-Memory Properties in Magnetic Heusler Alloys,” Advanced Materials Research, Vol. 52, pp. 221-228, 2008.
[40] V. V. Khovaylo, K. P. Skokov, S. V. Taskaev, D. Y. Karpenkov, E. T. Dilmieva, V. V. Koledov et al. “Magnetocaloric properties of Ni2+xMn1?xGa with coupled magnetostructural phase transition,” Journal of Applied Physics, Vol. 127, p. 173903, 2020.
[41] C. Jiang, Y. Muhammad, L. Deng, W. Wu, and H. Xu, “Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys,” Acta Materialia, Vol. 52, pp. 2779-2785, 2004.
[42] N. Lanska, O. Söderberg, A. Sozinov, Y. Ge, K. Ullakko, and V. K. Lindroos, “Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys,” Journal of Applied Physics, Vol. 95, pp. 8074-8078, 2004.
[43] J. M. MacLaren, “Role of alloying on the shape memory effect in Ni2MnGa,” Journal of Applied Physics, Vol. 91, pp. 7801-7803, 2002.
[44] X. Zhou, W. Li, H. P. Kunkel, and G. Williams, “A criterion for enhancing the giant magnetocaloric effect: (Ni–Mn–Ga)—a promising new system for magnetic refrigeration,” Journal of Physics: Condensed Matter, Vol. 16, pp. L39–L44, 2004.
[45] A. Aliev, A. Batdalov, S. Bosko, V. Buchelnikov, I. Dikshtein, V. Khovailo, V. Koledov, R. Levitin, V. Shavrov, and T. Takagi, “Magnetocaloric effect and magnetization in a Ni–Mn–Ga Heusler alloy in the vicinity of magnetostructural transition,” Journal of Magnetism and Magnetic Materials, Vol. 272–276, pp. 2040-2042, 2004.
[46] J. Kamarád, F. Albertini, Z. Arnold, F. Casoli, L. Pareti, and A. Paoluzi, “Effect of hydrostatic pressure on magnetization of Ni2+xMn1?xGa alloys,” Journal of Magnetism and Magnetic Materials, Vol. 290–291, pp. 669-672, 2005.
[47] V. V. Khovailo, V. Novosad, T. Takagi, D. A. Filippov, R. Z. Levitin, and A. N. Vasilev, “Magnetic properties and magnetostructural phase transitions in Ni2+xMn1?xGa shape memory alloys,” Physical Review B, Vol. 70, p. 174413, 2004.
[48] Z. Li, K. Xu, Y. Zhang, C. Tao, D. Zheng and C. Jing, “Two successive magneto-structural transformations and their relation to enhanced magnetocaloric effect for Ni55.8Mn18.1Ga26.1 Heusler alloy,” Scientific Reports, Vol. 5, No. 15143, 2015.
[49] K. Mandal, D. Pal, N. Scheerbaum, J. Lyubina, and O. Gutfleisch, “Effect of pressure on the magnetocaloric properties of nickel-rich Ni–Mn–Ga Heusler alloys,” Journal of Applied Physics, Vol. 105, p. 073509, 2009.
[50] D. Soto, F. A. Hernández, H. Flores-Zúñiga, X. Moya, L. Mañosa, A. Planes, S. Aksoy, and M. Acet, “Phase diagram of Fe-doped Ni-Mn-Ga ferromagnetic shape-memory alloys,” Physical Review B, Vol. 77, p. 184103, 2008.
[51] G. Porcari, F. Cugini, S. Fabbrici, C. Pernechele, F. Albertini, M. Buzzi, M. Mangia, and M. Solzi, “Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: The case of Ni-Co-Mn-Ga Heusler alloys,” Physical Review B, Vol. 86, p. 104432, 2012.
[52] B. Emre, S. Yuce, E. S. Taulats, A. Planes, S. Fabbrici, F. Albertini, and L. Manosa, “Large reversible entropy change at the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys,” Journal of Applied Physics, Vol. 113, p. 213905, 2013.
[53] S. Singh, S. W. D’Souza, K. Mukherjee, P. Kushwaha, S. R. Barman, S. Agarwal, P. K. Mukhopadhyay, A. Chakrabarti, E. V. Sampathkumaran, “Magnetic properties and magnetocaloric effect in Pt doped Ni-Mn-Ga,” Applied Physics Letters, Vol. 104, p. 231909, 2014.
[54] S. K. Sarkar, Saritra, P. D. Babu, A. Biswas, V. Siruguri, M. Krishnan, “Giant magnetocaloric effect from reverse martensitic transformation in Ni–Mn–Ga–Cu ferromagnetic shape memory alloys,” Journal of Alloys and Compound, Vol. 670, pp. 281-288, 2016.
[55] B. D. White, R. I. Barabash, O. M. Barabash, I. Jeon, and M. B. Maple, “Magnetocaloric effect near room temperature in quintenary and sextenary Heusler alloys,” Journal of Applied Physics, Vol. 126, p. 165101, 2019.
[56] C. Seguí, J. T. Serra, E. Cesari, and P. Lázpita, “Optimizing the Caloric Properties of Cu-Doped Ni–Mn–Ga Alloys,” Materials, Vol. 13, Issue 2, p. 419, 2020.
[57] A. A. Mendonça, L. Ghivelder, P. L. Bernardo, L. F. Cohen, A. M. Gomes, “Low hysteretic magnetostructural transformation in Cr-doped Ni-Mn-Ga Heusler alloy,” Journal of Alloys and Compounds, Vol. 938, p. 168444, 2023.
[58] S. Fabbrici, J. Kamarad, Z. Arnold, F. Casoli, A. Paoluzi, F. Bolzoni, R. Cabassi, M. Solzi, G. Porcari, C. Pernechele, F. Albertini, “From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys,” Acta Materialia, Vol. 59, pp. 412–419, 2011.
[59] M. Namvari, V. Chernenko, A. Saren, J. M. Porro, K. Ullakko, “Structure-property control of polycrystalline Ni-Mn-Ga by moderate Co-doping,” Journal of Alloys and Compounds, Vol. 944, p. 169184, 2023.
[60] J. Kamara´d, F. Albertini, Z. Arnold, F. Casoli, L. Pareti, A. Paoluzi, “Effect of hydrostatic pressure on magnetization of Ni2+xMn1?xGa alloys,” Journal of Magnetism and Magnetic Materials, Vol. 290–291, pp. 669–672, 2005.
[61] T. Yasudaa, T. Kanomataa, T. Saitoa, H. Yosidab, H. Nishiharac, R. Kainumad, K. Oikawad, K. Ishidad, K. U. Neumanne, K. R. A. Ziebeck, “Pressure effect on transformation temperatures of ferromagnetic shape memory alloy Ni50Mn36Sn14,” Journal of Magnetism and Magnetic Materials, Vol. 310, pp. 2770–2772, 2007.
[62] A. K. Nayak, K. G. Suresh, A. K. Nigam, A. A. Coelho, and S. Gama, “Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy,” Journal of Applied Physics, Vol. 106, p. 053901, 2009.
[63] S. Esakki Muthu, N. V. Rama Rao, M. Manivel Raja, S. Arumugam, K. Matsubayasi, and Y. Uwatoko, “Hydrostatic pressure effect on the martensitic transition, magnetic, and magnetocaloric properties in Ni50-xMn37+xSn13 Heusler alloys,” Journal of Applied Physics, Vol. 110, p. 083902, 2011.
[64] U. Devarajan, S. Esakki Muthu, S. Arumugam, S. Singh, and S. R. Barman, “Investigation of the influence of hydrostatic pressure on the magnetic and magnetocaloric properties of Ni2?XMn1+XGa (X?=?0, 0.15) Heusler alloys,” Journal of Applied Physics, Vol. 114, p. 053906, 2013.
[65] X. J. He, K. Xu, S. X. Wei, Y. L. Zhang, Z. Li, and C. Jing, “Barocaloric effect associated with magneto-structural transformation studied by an effectively indirect method for the Ni58.3Mn17.1Ga24.6 Heusler alloy,” Journal of Materials Science, Vol. 52, pp. 2915–2923, 2017.
[66] K. Mandal, P. Dutta, P. Dasgupta, S. Pramanick, S. Chatterjee, “Enhancement of magnetocaloric effect by external hydrostatic pressure in MnNi0.75Fe0.25Ge alloy,” Journal of Physics D: Applied Physics, Vol. 51, p. 225004, 2018.
[67] W. Shi, F. Chen, J. Liu, H. Xuan, R. Zhang, Q. Zhang, Y. Jiang, M. Zhang, “The effect of hydrostatic pressure on martensitic transition and magnetocaloric effect of Mn44.7Ni43.5Sn11.8 ribbons,” Solid State Communications, Vol. 308, p. 113821, 2020.
[68] P. Sivaprakasha, S. Esakki Muthub, A. K. Singh, K. K. Dubeyc, M. Kannana, S. Muthukumarana, S. Guhad, M. Kard, S. Singh, S. Arumugam, “Effect of chemical and external hydrostatic pressure on magnetic and magnetocaloric properties of Pt doped Ni2MnGa shape memory Heusler alloys,” Journal of Magnetism and Magnetic Materials, Vol. 514, p. 167136, 2020.
[69] B. Han, X. Tian, L. Zhao, W. Zhao, T. Ma, C. Wang, K. Zhang, C. Tan, “Dynamically tunable operating temperature range of Ni-Co-Mn-Sn magnetic shape memory alloys via pressure modulation,” Journal of Magnetism and Magnetic Materials, Vol. 553, p. 169304, 2022.
[70] F. Albertini, J. Kamarád, Z. Arnold, L. Pareti, E. Villa, and L. Righi, “Pressure effects on the magnetocaloric properties of Ni-rich and Mn-rich Ni2MnGa alloys,” Journal of Magnetism and Magnetic Materials, Vol. 316, pp. 364-367, 2007.
[71] Y. Yang, Z. Li, C. F. Sánchez-Valdés, J. L. S. Llamazares, B. Yang, Y. Zhang, C. Esling, X. Zhao, and L. Zuo, “Phase transformation and magnetocaloric effect of Co-doped Mn–Ni–In melt-spun ribbons,” Journal of Applied Physics, Vol. 128, p. 055110, 2020.
[72] Y. Jiang, Z. Li, Z. Li, Y. Yang, B. Yang, Y. Zhang, C. Esling, X. Zhao, and L. Zuo, “Magnetostructural transformation and magnetocaloric effect in Mn-Ni-Sn melt-spun ribbons,” The European Physical Journal Plus, Vol. 132, No. 42, 2017.
[73] N. V. R. Rao, R. Gopalan, V. Chandrasekaran, and K. G. Suresh, “Microstructure, magnetic properties and magnetocaloric effect in melt-spun Ni–Mn–Ga ribbons,” Journal of Alloys and Compounds, Vol. 478, pp. 59–62, 2009.
[74] Z. B. Li, J. L. Sanchez Llamazares, C. F. Sanchez-Valdes, Y. D. Zhang, C. Esling, X. Zhao, and L. Zuo, “Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon,” Applied Physics Letters, Vol. 100, p. 174102, 2012.
[75] V. A. Chernenko, V. V. Kokorin, and I. N. Vitenko, “Properties of ribbon made from shape memory alloy Ni2MnGa by quenching from the liquid state,” Smart Materials and Structures, Vol. 3, p. 80, 1994.
[76] J. Pons, C. Seguí, V. A. Chernenko, E. Cesari, P. Ochin, and R. Portier, “Transformation and ageing behaviour of melt-spun Ni–Mn–Ga shape memory alloys,” Materials Science and Engineering: A, Vol. 273–275, pp. 315-319, 1999.
[77] W. Wang, J. Yu, Q. Zhai, Z. Luo, and H. Zheng,” Origin of retarded martensitic transformation in Heusler Ni–Mn–Sn melt-spun ribbons,” Intermetallics, Vol. 42, pp. 126-129, 2013.
[78] V. A. Chernenko, G. N. Kakazei, A. O. Perekos, E. Cesari, S. Besseghini, “Magnetization anomalies in melt-spun Ni–Mn–Ga ribbons,” Journal of Magnetism and Magnetic Materials, Vol. 320, pp. 1063–1067, 2008.
[79] M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, “On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies,” Physicia Status Solidi A, Vol. 208, Issue 3, pp. 493-501, 2011.
[80] R. Varga, T. Ryba, Z. Vargova, K. Saksl, V. Zhukova, and A. Zhukov, “Magnetic and structural properties of Ni–Mn–Ga Heusler-type microwires,” Scripta Materialia, Vol. 65, pp. 703-706, 2011.
[81] V. Zhukova, A. M. Aliev, R. Varga, A. Aronin, G. Abrosimova, A. Kiselev, and A. Zhukov, “Magnetic Properties and MCE in Heusler-Type Glass-Coated Microwires,” Journal of Superconductivity and Novel Magnetism, Vol. 26, pp. 1415-1419, 2013.
[82] A. Zhukov, V. Rodionova, M. Ilyn, A. M. Aliev, R. Varga, S. Michalik, A. Aronin, G. Abrosimova, A. Kiselev, M. Ipatov, and V. Zhukova, “Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires,” Journal of Alloys and Compounds, Vol. 575, pp. 73-79, 2013.
[83] V. Zhukova, V. Chernenko, M. Ipatov, and A. Zhukov, “Magnetic Properties of Heusler-Type NiMnGa Glass-Coated Microwires,” IEEE Transactions on Magnetics, Vol. 51, No 11, pp. 1-4, 2015.
[84] Z. Ding, Q. Qi, D. Wu, J. Liu, X. Sun, Y. Cui, M. Yue, Y. Zhang, J. Zhu, “Superlattice in austenitic Ni-Mn-Ga shape memory microwires,” Journal of Alloys and Compounds, Vol. 777, pp. 174-179, 2019.
[85] Y. Liu, X. Zhang, D. Xing, H. Shen, D. Chen, J. Liu, J. Sun, “Magnetocaloric effect (MCE) in melt-extracted Ni–Mn–Ga–Fe Heusler microwires,” Journal of Alloys and Compounds, Vol. 616, pp. 184–188, 2014.
[86] H. Zhang, M. Qian, X. Zhang, S. Jiang, L. Wei, D. Xing, J. Sun, L. Geng, “Magnetocaloric effect of Ni-Fe-Mn-Sn microwires prepared by melt-extraction technique,” Materials & Design, Vol. 114, pp. 1–9, 2017.
[87] X. Zhang, M. Qian, Z. Zhang, L. Wei, L. Geng, and J. Sun, “Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires,” Applied Physics Letters, Vol. 108, p. 052401, 2016.
[88] M. F. Qiana, X. X. Zhang, X. Li, R. C. Zhang, P. G. Martin, J. F. Suna, L. Geng, T. B. Scott, H. X. Peng, “Magnetocaloric effect in bamboo-grained Ni-Mn-Ga microwires over a wide working temperature interval,” Materials & Design, Vol. 190, p. 108557, 2020.
[89] P. G. Tello, F. J. Castano, R. C. O’Handley, S. M. Allen, M. Esteve, F. Castano, A. Labarta, and X. Batlle, “Ni–Mn–Ga thin films produced by pulsed laser deposition,” Journal of Applied Physics, Vol. 91, pp. 8234-8236, 2002.
[90] A. Annadurai, A. K. Nandakumar, S. Jayakumar, M. D. Kannan, M. M. Raja, S. Bysak, R. Gopalan, V. Chandrasekaran, “Composition, structure and magnetic properties of sputter deposited Ni–Mn–Ga ferromagnetic shape memory thin films,” Journal of Magnetism and Magnetic Materials, Vol. 321, pp. 630–634, 2009.
[91] E. Yuzuak, I. Dincer, Y. Elerman, A. Auge, N. Teichert, and A. Hutten, “Inverse magnetocaloric effect of epitaxial Ni-Mn-Sn thin films,” Applied Physics Letters, Vol. 103, p. 222403, 2013.
[92] A. Sharma, S. Mohan, S. Suwas, “Development of bi-axial preferred orientation in epitaxial NiMnGa thin films and its consequence on magnetic properties,” Acta Materialia, Vol. 113, pp. 259-271, 2016.
[93] B. Weise, B. Dutta, N. Teichert, A. Hütten, T. Hickel, and A. Waske, “Role of disorder when upscaling magnetocaloric Ni-Co-Mn-Al Heusler alloys from thin films to ribbons,” Scientific Reports, Vol. 8, No. 9147, 2018.
[94] H. Yako, T. Shima and M. Doi, “Magnetic properties and magnetocaloric effect of Ni2Mn1+xSn1-x Heusler alloy thin films,” INTERMAG, Singapore, pp. 1-1, 2018.
[95] C. Rousselot, D. Bourgault, P. Delobelle, “Thermo-magneto-mechanical properties of near stoichiometric Ni2MnGa (Mn > Ga) thin films deposited by radio-frequency magnetron sputtering on Si substrate,” Thin Solid Films, Vol. 768, p. 139718, 2023.
[96] Y. Zhang, R. A. Hughes, J. F. Britten, W. Gong, J. S. Preston, G. A. Botton, and M. Niewczas, “Epitaxial Ni–Mn–Ga films derived through high temperature in situ depositions,” Smart Materials and Structures, Vol. 18, p. 025019, 2009.
[97] I. R. Aseguinolaza, I. Orue, A. V. Svalov, K. Wilson, P. Müllner, J. M. Barandiarán, V. A. Chernenko, “Martensitic transformation in Ni–Mn–Ga/Si(100) thin films,” Thin Solid Films, Vol. 558, pp. 449-454, 2014.
[98] A. Auge, N. Teichert, M. Meinert, G. Reiss, A. Hütten, E. Yüzüak, I. Dincer, Y. Elerman, I. Ennen, and P. Schattschneider, “Thickness dependence of the martensitic transformation, magnetism, and magnetoresistance in epitaxial Ni-Mn-Sn ultrathin films,” Physical Review B, Vol. 85, p. 214118, 2012.
[99] N. Teichert, D. Kucza, O. Yildirim, E. Yuzuak, I. Dincer, A. Behler, B. Weise, L. Helmich, A. Boehnke, S. Klimova, A. Waske, Y. Elerman, and A. Hutten, “Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films,” Physical Review B, Vol. 91, p. 184405, 2015.
[100] V. Recarte, J. I. Pérez-Landazábal, V. Sánchez-Alárcos, V. A. Chernenko, and M. Ohtsuka, “Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni–Mn–Ga thin films,” Applied Physics Letters, Vol. 95, p. 141908, 2009.
[101] Y. Zhang, R. A. Hughes, J. F. Britten, P. A. Dube, J. S. Preston, G. A. Botton, and M. Niewczas, “Magnetocaloric effect in Ni-Mn-Ga thin films under concurrent magnetostructural and Curie transitions,” Journal of Applied Physics, Vol. 110, p. 013910, 2011.Citation
D. Pal, "A Short Review of Magnetocaloric Effect in Ni-Mn-Ga Heusler Alloy System," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.3, pp.13-20, 2023 -
Open Access Article
Madan Singh, Sekhants’o Lara, Naleli Jubert Matjelo, Limakatso Lepekola, Moruti Kao, Mampesi Thato Matobako
Research Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.3 , pp.21-28, Jun-2023
Abstract
Semiconductor nanomaterials show changing behavior when the size of materials decreases from bulk to nanoscale. Inspired by this, we developed a model free from adjustable parameters to calculate the optoelectrical properties of CdSe, CdS, ZnSe, Si, and ZnO semiconductor nanosolids. Cohesive energy varies by reducing the particle size, based on this we established a model to calculate the dielectric constant, phonon frequency, and energy band gap of semiconductor nanomaterials. In our calculations, we incorporated the shape factor, which changes from a spherical shape to an octahedral shape. It is reported that the energy band gap increases on decreasing the size of the particle and the effect is more when the shape changes from spherical to tetrahedral to octahedral on the same size. Also, it is observed that there is an appreciable change in the properties of the semiconductors materials when the size is near 10 nm. Our results are compared with the existing experimental and simulation data. It is reported that the model prediction agrees well with the experimental data, which validates the theory developed.Key-Words / Index Term
Dangling bonds, Cohesive energy, Bandgap, Phonon frequency, Nanomaterials, Shape factor.References
[1] A. D. Yoffe, “Semiconductor Quantum Dots and related Systems: Electronic, Optical, Luminescence and related Properties of low Dimensional Systems,” Advances in Physics, Vol. 50, No. 1, pp. 1-208, 2001.
[2] C.Q. Sun, “Oxidation Electronics: Bond–Band–Barrier Correlation and its Applications,” Progress in Materials Science, Vol. 48, No. 6, pp. 521-68, 2003.
[3] A.A. Sonkamble, S.M. Dongarge, M. Malathi, U.V. Biradar, "Dielectric Relaxation Study of Lipids in the Microwave Frequency Region Using TDR," International Journal of Scientific Research in Physics and Applied Sciences, Vol.9, Issue.5, pp.16-22, 2021.
[4] H.I. Ikeri, A.I. Onyia, P.U. Asogwa, "Theoretical Modeling and Simulation of Electronic Band Structure and Properties of InAs/GaAs Superlattice," International Journal of Scientific Research in Physics and Applied Sciences, Vol.8, Issue.5, pp.28-37, 2020.
[5] G.R. Patel, T.C. Pandya, "Effect of Size and Shape on Static Refractive Index, Dielectric constant and Band gap of Nano solids," International Journal of Scientific Research in Physics and Applied Sciences, Vol.6, Issue.1, pp.37-42, 2018.
[6] D. Segets, J.M. Lucas, R.N. Klupp Taylor, M. Scheele, H. Zheng, A.P. Alivisatos, W. Peukert, “Determination of the Quantum Dot Band Gap Dependence on Particle Size from Optical Absorbance and Transmission Electron Microscopy Measurements,” ACS. Nano, Vol. 6, No. 10, pp. 9021-32, 2012.
[7] M. Singh, S. Lara, S. Tlali, “Effects of Size and Shape on the Specific Heat, Melting Entropy and Enthalpy of Nanomaterials,” Journal of Taibah University for Science, Vol. 11, No. 6, pp. 922-929, 2016.
[8] Y. Kayanuma, “Quantum-Size Effects of Interacting Electrons and Holes in Semiconductor Microcrystals with Spherical Shape,” Physical Review B, Vol. 38, No. 14, pp. 9797-9805, 1988.
[9] R. Viswanatha, S. Sapra, T. Saha-Dasgupta, D. Sarma, “Electronic Structure of and Quantum Size Effect in III-V and II-VI Semiconducting Nanocrystals using a Realistic Tight Binding Approach,” Physical Review B, Vol. 72, No 4, pp. 045333, 2005.
[10] G. Guisbiers, O. Van Overschelde, M. “Wautelet, Theoretical Investigation of Size and Shape Effects on the Melting Temperature and Energy Bandgap of TiO2 Nanostructures,” Applied Physics Letters, Vol. 92, No. 10, pp. 103121, 2008.
[11] A.S. Barnard, “Shape-Dependent Confinement of the Nanodiamond Band Gap,” Crystal Growth & Design, Vol. 9, No. 11, pp. 4860-4863, 2009.
[12] M. Singh, M. Goyal, K Devlal, “Size and Shape Effects on the Band Gap of Semiconductor Compound Nanomaterials,” Journal of Taibah University for Science, Vol. 12, No. 4, pp. 470-475, 2018
[13] G. Guisbiers, “Advances in Thermodynamic Modelling of Nanoparticles,” Advances in Physics: X, Vol. 4, No. 1, pp. 1668299, 2019.
[14] M. Goyal, B.R.K. Gupta, “Temperature Dependent Equation of State for Solids,” Oriental Journal of Chemistry, Vol. 32, No. 4, pp. 2193-2198, 2016.
[15] M. Goyal, M. Singh, “Size and Shape Dependence of Optical Properties of Nanostructures,” Applied Physics A, Vol. 126, No. 3, pp. 1, 2020.
[16] Z. Iqbal, S. Veprek, “Raman Scattering from Hydrogenated Microcrystalline and Amorphous Silicon,” Journal of Physics C: Solid State Physics, Vol. 15, No..2, pp. 377-392, 1982.
[17] G. X. Cheng, H. Xia, K.J. Chen, W. Zhang, X. K. Zhang, “Raman Measurement of the Grain Size for Silicon Crystallites,” Physica Status Solidi A, Vol. 118, No. 1, pp. K51-K54, 1990.
[18] C. Ossadnik, S. Vepr?ek, I. Gregora, “Applicability of Raman Scattering for the Characterization of Nanocrystalline Silicon,” Thin Solid Films, Vol. 337, No. 1-2, pp. 148-151, 1999.
[19] A. Tanaka, S. Onari, T. Arai, “Raman Scattering from CdSe Microcrystals Embedded in a Sermanate Glass Matrix,” Physical Review B, Vol. 45, No. 12 pp. 6587-6592, 1992.
[20] H.M. Cheng, K.F. Lin, H.C. Hsu, C.J. Lin, L.J. Lin, W.F. Hsieh, “Enhanced Resonant Raman Scattering and Electron-Phonon Coupling from Self-Assembled Secondary ZnO Nanoparticles,” The Journal of Physical Chemistry B, Vol. 109, No. 39, pp. 18385-18390, 2005.
[21] J.A. Van Vechten, M. Wautelet, “Variation of Semiconductor Band Gaps with Lattice Temperature and with Carrier Temperature when these are not Equal,” Physical Review B, Vol. 23, No. 10, pp. 5543-5550, 1981.
[22] G. Guisbiers, M. Kazan, O. Van Overschelde, M. Wautelet, S. Pereira, “Mechanical and Thermal Properties of Metallic and Semiconductive Nanostructures,” The Journal of Physical Chemistry C, Vol. 112, No. 11, pp. 4097-4103, 2008.
[23] Q. Jiang, H. Shi, M. Zhao, “Melting Thermodynamics of Organic Nanocrystals,” The Journal of Chemical Physics, Vol. 111, No. 5, pp. 2176-2180, 1999.
[24] G. Patel, M. Singh, T. Pandya, “Effect of Size and Shape on Refractive Index, Dielectric Constant and Band Gap of Semiconducting Nanowire,” Nanoscience & Nanotechnology-Asia, Vol. 10, No. 3, pp. 279-285, 2020.
[25] C.C. Yang, Q. Jiang, “Size Effect on the Bandgap of II–VI Semiconductor Nanocrystals,” Materials Science and Engineering: B, Vol. 131, No 1-3 pp. 191-194, 2006.
[26] T.T.M. Palstra, B. Batlogg, R.B. Van Dover, L.F. Schneemeyer, J.V. Waszczak, “Dissipative Flux Motion in High-Temperature Superconductors,” Physical Review B, Vol. 41, No. 10, pp. 6621-6632, 1990.
[27] M. Li, J.C. Li, “Size Effects on the Band-Gap of Semiconductor Compounds,” Materials Letters, Vol. 60, No. 20, pp. 2526-2529, 2006.
[28] R. Zallen, “The Physics of Amorphous Solids,” Wiley, New York, 1983.
[29] H.M. Lu, P.Y. Li, Z.H. Cao, S.K. Meng, “Size-, Shape-, and Dimensionality-Dependent Melting Temperatures of Nanocrystals, “The Journal of Physical Chemistry C, Vol. 113, No. 18, pp. 7598-7602, 2009.
[30] J.H. Rose, J. Ferrant, J.R. Smith, “Universal Binding Energy Curves for Metals and Bimetallic Interfaces,” Physical Review Letters, Vol. 47, No. 9, pp. 675-678, 1981.
[31] C.Q. Sun, X.W. Sun, B.K. Tay, S.P. Lau, H.T. Huang, S.J. Li, “Dielectric Suppression and its Effect on Photo absorption of Nanometric Semiconductors,” Journal of Physics D: Applied Physics, Vol. 34, No. 15, pp. 2359-2362, 2001.
[32] C.C. Yang, S. Li, “Size-Dependent Raman Red Shifts of Semiconductor Nanocrystals” The Journal of Physical Chemistry B, Vol. 112, No. 45, pp. 14193-14197, 2008.
[33] C. Kittle, Introduction to Solid State Physics, 7th edition, John Wiley & sons, New York, 1996.
[34] M. Mi, H. Li, “Modeling Dielectric Constant of Semiconductor Nanocrystals,” IEEE Transactions on Nanotechnology Vol. 11, No. 5, pp. 1004-1008 , 2012.
[35] R.C. Weast, CRC Handbook of Chemistry and Physics, Boca Raton, FL: CRC Press, 69th ed., E-112, 1988.
[36] C.C. Yang, Q. Jiang, “Size effect on the bandgap of semiconductor nanocrystals,” Solid State Phenomena, Vol. 121, pp 1069-1072, 2007.
[37] N. Arora, D.P. Joshi, “Band Gap Dependence of Semiconducting Nano-Wires on Cross-Sectional Shape and Size,” Indian Journal of Physics, Vol. 91, No. 12, 1493-1501, 2017.
[38] C.Q. Sun, S. Li, B.K. Tay, T.P. Chen, “Upper Limit of Blue Shift in the Photoluminescence of CdSe and CdS Nanosolids,” Acta Materialia Vol. 50, No. 18, 4687-4693, 2002.
[39] W.H. Qi, M.P. Wang, Q.H. Liu, “Shape Factor of Nonspherical Nanoparticles,” Journal of materials Science, Vol. 40, No. 9-10, pp. 2327-2739, 2005.
[40] W.H. Qi, B.Y. Huang, M.P. Wang, Z.M. Yin, J. Li, “Shape Factor for Non-Cylindrical Nanowires,” Physica B: Condensed Matter, Vol. 403, No. 13-16, pp. 2386-2389, 2008.
[41] H. Yu, J. Li, R.A. Loomis, L.W. Wang, W.E. Buhro, “Two- Versus Three-Dimensional Quantum Confinement in Indium Phosphide Wires and Dots,” Nature Materials, Vol. 2, No. 8, pp.517-520, 2003.
[42] J. Li, W. Wang, “Band-Structure-orrected Local Density Approximation Study of Semiconductor Quantum Dots and Wires,” Physical Review B, Vol. 72, No. 12, pp. 125325, 2005.
[43] B.F. Levine, d-Electron Effects on Bond Susceptibilities and Ionicities, Physical Review B, Vol. 7, No. 6, pp. 2591-2600, 1973.
[44] C.B. Murray, D.J. Norris, M.G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites,” Journal of the American Chemical Society, Vol 115, No. 19, pp. 8706-8715, 1993.
[45] C. Delerue, M. Lannoo, G. Allan, “Concept of Dielectric Constant for Nanosized Systems,” Physical Review B, Vol. 68, No. 11, pp. 115411, 2003.
[46] C.C. Yang, S. Li, “Investigation of Cohesive Energy Effects on Size-Dependent Physical and Chemical Properties of Nanocrystals,” Physical Review B, Vol. 75, No. 16, pp. 165413, 2007.Citation
Madan Singh, Sekhants’o Lara, Naleli Jubert Matjelo, Limakatso Lepekola, Moruti Kao, Mampesi Thato Matobako, "Modeling Size and Dimension Dependence of Electrical and Optical Properties of Semiconductor Materials at Nanoscale," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.3, pp.21-28, 2023 -
Open Access Article
Magnetic, Electrical and Structural Measurments of Bi2Sr2Ca2(Cu1-xFex)nO10+? (x=0.01 and n=3)
Rohitash Kumar, Yadunath Singh
Research Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.3 , pp.29-32, Jun-2023
Abstract
In this research work, we are presenting a study of the magnetic, electrical, and morphological properties of the Bi2Sr2Ca2(Cu1-xFex)3O10+? bulk superconductor. The hysteresis curve of the sample displays the magnetization of the applied magnetic field at ±15k (Oe), which exhibits paramagnetic behavior in the sample and reports a squareness ratio of 0.2. It is suggesting the presence of a single magnetic domain in the sample. We measured the electrical resistance by Four Prove method from room temperature to liquid nitrogen temperature range, which shows the metal and semiconducting transition, since the curve is linearly decreasing order nearly 200K temperature. After that, the resistance again slowly increases and shows semiconducting behavior. We studied morphology of the sample by FE-SEM, and collected structural data. These morphological representations show platelet type layered structures at the micron range in the sample. These results are quite similar to Bi-2223 ceramic superconductor.Key-Words / Index Term
Superconductors, bismuth compounds, electrical and magnetic study, morphology, hysteresis curve, FE-SEM.References
[1]. H. Maeda, Y. Tanaka, M. Fukutomi, “A new high-Tc oxide superconductor without a rare earth element”, Jpn. J. Appl. Phys., Vol. 27, pp.L209-L210, 1988.http://iopscience.iop.org/article/10.1143/JJAP.27.L209
https://doi.org/10.1143/JJAP.27.L209
[2]. G. Ilonca, T.R. Yang, A.V. Pop, G. Stiufiuc, R. Stiufiuc and C. Lung,“Critical Currents of Bi: 2212 Doped by Fe and Ni”, PhysicaC, Vol. 388-389, pp. 425, 2003.https://doi.org/10.1016/S0921-4534(02)02373-0
[3]. S. B. Mohamed, S. A. Halim, H. Azhan, “Effect of doping Ba, Y V, Zn and Sn on BSCCO superconducting ceramics”, IEEE Transaction on Applied Superconductivity, Vol.11, pp. 2862-2864, 2001.https://doi.org/10.1109/77.919659
[4]. I. H. Gul, Rehman, M. Ali and A. Maqsood, “E?ect of vanadium and barium on the Bi-based(2223) superconductors”PhysicaC, Vol. 432, pp.71-80, 2005.https://doi.org/10.1016/j.physc.2005.07.013
[5]. ReynaldPasserini, “Formation, characterization and mechanical properties under uniaxial stress of Bi,Pb(2223) in silver-clad ribbons”, Docteuren Science Thesis, Universite de Geneve, 2002.
[6]. I. Chong, Z. Hiroi,M. Izumi, J. Shimoyama, Y. Nakayama,K. Kishio, T. Terashima, Y. Bando and M. Takano, “High Critical-Current Density in the Heavily Pb-Doped Bi2Sr2CaCu2O8+? Superconductor: Generation of Efficient Pinning Centers”, ScienceVol. 276, pp.770-773, 1997.DOI: 10.1126/science.276.5313.770
[7]. J. Shimoyama, Y. Nakayama, K. Kitazawa, K. Kishio and Z. Hiroi, I. Chong, M. Takano, “Strong flux pinning up to liquid nitrogen temperature discovered in heavily Pb-doped and oxygen controlled Bi2212 single crystals”,Physica C, Vol. 281 pp. 69-75, 1997. https://doi.org/10.1016/S0921-4534(97)00471-1
[8]. J. Shimoyama, K. Murakami, K. Shimizu, Y. Nakayama and K. Kishio, “Microstructure and critical current properties of Bi(Pb)2212/metal tapes and single crystals”, Physica C, Vol. 357-360, pp. 1091-1097, 2001.https://doi.org/10.1016/S0921-4534(01)00545-7
[9]. H. Salamati, P. Kameli and F. S. Razavi, “Effect of Pr doping on the superconductivity and interlayer coupling of the Bi2Sr2?xPrxCa1Cu2Oy system”, Supercond. Sci. Technol.,Vol. 16 No. 8,pp. 922, 2003. https://doi.org/10.1088/0953-2048/16/8/316
[10]. H. L. Liu,M. A. Quijada, A.M. Zibold, Y. D. Yoon, D. B. Tanner, G. Cao, J.E. Crow, H. Berger, G. Margaritondo, L. Forrk, B. Hoan, J.T.Markert, R.J. Kelly and M. Onellion, “Doping-induced change of optical properties in underdoped cuprate superconductors”,J. Phys.: Condens. Matter,Vol. 11(1),pp. 239-264, 1999. https://doi.org/10.1088/0953-8984/11/1/020
[11]. X F. Sun, X. Zhao, X.-G. Li, and H. C. Ku, “Hole filling and interlayer coupling in Bi2Sr2Ca1-2xPrxCu2Oy single crystals”, Phys. Rev. B Vol. 59(13), pp. 8978-8983, 1999. https://doi.org/10.1103/PhysRevB.59.8978
[12]. Y. K. Kuo, C. W. Schneider, M. J. Skove, M. V. Nevitt and G. X. Tessema, “Effect of magnetic and nonmagnetic impurities (Ni,Zn) substitution for Cu in Bi2(SrCa)2+n(Cu1-xMx)1+nOywhiskers” Phys. Rev. B.,Vol. B56(10), pp. 6201-6206, 1997. https://doi.org/10.1103/PhysRevB.56.6201
[13]. H. L. Liu, D. B. Tanner, H. Berger and G. Margaritondo, “ab-plane optical properties of Ni-doped BiSrCaCuO2228” Physica C,Vol. 311, pp. 197-210, 1999.https://doi.org/10.1016/S0921-4534(98)00637-6
[14]. Ernesto Govea-Alcaide, Lázaro Pérez Acosta and R. F. Jardim, “Diamagnetic, paramagnetic, and ferromagnetic properties of ball milled Bi1.65Pb0.35Sr2Ca2Cu3O10+? powders’’,J Nanopart Res, Vol.17, pp.432,2015. https://doi.org/10.1007/s11051-015-3231-y
[15]. Rohitash Kumar, H. S. Singh and Yadunath Singh, “Synthesis and Structural Characterization of Bi2Sr2Ca2(Cu1-XFeX)nO10+?(x=0.01,n=3)”, AIP Conf. Proc. Vol. 1953, pp. 120001-1–120001-4, 2018. https://doi.org/10.1063/1.5033066
[16]. Rohitash Kumar, H. S. Singh and Yadunath Singh, “FTIR Characterization of Bi2Sr2Can-1(Cu1-xFex)3O10+?With (n=3,x=0.01) Ceramic Superconductor”, AIP Conf. Proc. Vol. 1953, pp.030001-1–030001-4, 2018. https://doi.org/10.1063/1.5032336
[17]. Yadunath Singh, “Electrical Resistivity Measurements: A Review”, International journal of modern physics: Conference series,Vol. 22, pp. 745-756, 2013. https://doi.org/10.1142/S2010194513010970
[18]. Dho J., Lee E.K., Park J.Y., Hur N.H., “Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19”, J. Magn. Magn. Mater.,Vol. 285, pp.164-168, 2005.https://doi.org/10.1016/j.jmmm.2004.07.033
[19]. Jotania H., Khomane R., Deshpande A., Chauhan C. and Kulkarni B., “Physical and Magnetic Properties of Barium Calcium Hexaferrite Nanoparticles Synthesized by Water-in-oil Reverse Micelle and Co-precipitation Techniques”, J. Sci. Res., Vol. 1(1), pp.1-13, 2009. https://doi.org/10.3329/jsr.v1i1.1684
[20]. David Schmool; et al., “Introductory Solid State Physics”,MedTec Introductory Physics Series: ISBN: 9789384007409, edition2014.
[21]. S.X. Dou, Y. J. Sheng; et al., “Effect of Fe Doping on Superconductivity in the Bi-Pb-Sr-Ca-Cu-O System”, Modern Phys. Lett. B, Vol. 4, No. 22, pp.1393-1402, 1990.https://doi.org/10.1142/S0217984990001756Citation
Rohitash Kumar, Yadunath Singh, "Magnetic, Electrical and Structural Measurments of Bi2Sr2Ca2(Cu1-xFex)nO10+? (x=0.01 and n=3)," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.3, pp.29-32, 2023 -
Open Access Article
Daboer Pauline Lami, Joseph Caleb Shaorga
Research Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.3 , pp.33-39, Jun-2023
Abstract
the study determines the effect of instructional material on physics students’ attitude and their academic achievement. The study pretests, post-tests the design and employed a quasi-experimental design. Three research questions and three hypotheses were formulated to guide the study. Physics achievement test as an instrument of data collection was used to collect data from a sample of sixty students in two selected secondary schools in Jos-North Local Government Area of Plateau State. In addition, attitude questionnaires were given to students in the various schools sampled. The data collected was analyzed using mean and standard deviation for the research questions and T-test for the hypothesis. The findings of the research reveal that instructional materials have a very great influence on the teaching and learning of physics in senior secondary school. The result also showed that there is a significant difference between male and female students taught with instructional materials. Based on the findings, recommendations were made as revealed by the study, that academic achievement and student attitude depend on the use of instructional material and the teacher’s attitude to awaken the interest of the physics student. Also, the government should organize workshops and seminars for teachers on the use of instructional material to stimulate the interest of the student, and educational planners should implement it in the school curriculum among others.Key-Words / Index Term
instructional material; academic achievement; senior secondary schools, attitudes, students, gender, studying physics.References
[1] Abubakar Umar, Oguguo Musa, “Effects of Explicit Instruction on Students’ Achievement and Attitude towards Basic Science,” Nigerian Online Journal of Educational Sciences and Technology, Vol.2, Issue.2, pp.18-34, 2011.
[2] Apata Femi “Students’ Gender and Numerical Proficiency in Secondary School Physics in Kwara State, Nigeria,” Journal of Research in Education and Society, Vol.2, Issue.4, pp.195-198, 2011.
[3] Awotunde, Payemi, Ugodulunwa Chris, “Research Methods in Education, Jos, Nigeria,” Fab Anieh Publisher, Nigeria, pp.195-198, 2004.
[4] Brunner Jean, “Theories of Learning, Memory and other Aspect of Cognition,” Educational Research and Technology journal, Vol.1, Issue.1, pp. 99-11, 1990.
[5] Ema Ajayi, “Educational Technology: Method, Materials, and Machines,” Ya-banga publishers, Abuja, pp.24-34, 2016.
[6] Fme, “Roadmap for the Nigeria Education Reforms Abuja,” Nigeria Authors Publisher, pp.5-19, 2009.
[7] Longe Adedeji, “Increasing Girls Access to Technical and Vocational Education in Nigeria,” Nsukka Publishers, Nigeria, pp.195-198, 2003.
[8] Macedo Macedo, “The Colonialism of the English on Movement in Education,” ERC Publisher, Nigeria, pp.15-24, 2000.
[9] Madua Bunmi, “Improvisation and Utilization of Resources in the Teaching and Learning of Science and Mathematics in Secondary Schools in Cross River State,” Global Journal of Educational Research, Vol.16, Issue.1,pp. 21-28, 2003.
10] Ngwoke Eko, “Effect of Inquiry Techniques on the Interest of Technical College Students in Auto Mechanic in Nigeria,” IOSR Journal of Research & Method in Education, Vol.2, Issue.6, pp.53-60, 2014.
[11] Nnachi Okeke, “Effect of Constructive Simulation Teaching Strategy on Students’ Achievement and Retention in Christian Religious Studies,” NAPTE Publishers, Nigeria, pp.195-198, 2017.
[12] Okonkwo Pete, “Impact of Instructional Materials in Teaching and Learning of Physics in Senior Secondary Schools in Onitsha Educational Zone,” Nwafor Orizu College of Education Departmental Journal , Vol.5, Issue.6, pp.15-30, 2016.
[13] Osuagwu, Rage, “The Relationship between Standardized Tests and the Objectives Outlined on the Individualized Education Programs of Students with Special Needs,” Jones International University Journal, Vol.2, Issue. 2, pp. 95-110, 2011.
[14] Oyibe Nnamani, “Gender and Academic Achievement of Secondary School Students in Social Studies in Abakaliki Urban of Ebonyi State,” British Journal of Education, Vol.4, Issue.8, pp. 72-83, 2016
[15] Wasagu Waec, “Factors Affecting Learning in Secondary School in Otukpo Local Government Area of Benue State, Nigeria,” Journal of Education and Leadership Development, Vol.9, Issue.1, pp. 95-101. 2010.Citation
Daboer Pauline Lami, Joseph Caleb Shaorga, "The Effects of Instructional Material on Students’ Attitude and Academic Achievement in Physics in Senior Secondary Schools, Plateau State, Nigeria," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.3, pp.33-39, 2023
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.