Volume-12 , Issue-1 , Feb 2024, ISSN 2348-3423 (Online) Go Back
-
Open Access Article
Structural, Morphological and Magnetic Properties of Manganese-doped Copper Ferrite Nanoparticles
U. Naresh, T. Ramprasad, Y. Saritha Kumari, S. Nagaveni
Research Paper | Journal-Paper (IJSRPAS)
Vol.12 , Issue.1 , pp.1-6, Feb-2024
Abstract
The current investigation focused on the structural, morphological, and magnetic properties of Manganese-doped copper ferrite nanoparticles (Mn0.5Cu0.5Fe2O4) (MCF) synthesised through the auto-combustion method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) are used to observe morphology, and the structural features, with the help of vibrational sample magnetometer (VSM) the magnetic characteristics were assessed based on VSM hysteresis behavior. The structural properties such as crystallite size and macro strain were evaluated using the Williamson-Hall method from X-ray diffraction analysis. The FTIR studies reflect the presence of octahedral and tetrahedral bond vibrations; this is evidence of the formation of spinel structure. Interestingly, the VSM studies represent the soft magnetic nature with lesser values of retentiveness and coercivity. The examined results reflect that the synthesized materials are most suitable for biomedical applications.Key-Words / Index Term
Nano Ferrites, auto-combustion method: XRD, FTIR FESEM, And VSM.References
[1] K.Chandra Babu Naidu and W.Madhuri, Hydrothermal synthesis of NiFe2O4 nanoparticles: structural, morphological, optical, electrical and magnetic properties. Bull. Mater. Sci., Vol. 40, No. 2, , Pp.417–425, April 2017,.doi:10.1007/s12034-017-1374-4
[2] Islam Ibraheem O.Ali Tarek M.Salama A.A. Bahgat Mohamed Mokhtar Mohamed, Synthesis of Magnetically Recyclable Spinel Ferrite (MFe2O4, M=Zn, Co, Mn) Nanocrystals Engineered by Sol-gel-HydrothermalTechnology.S0926-3373,30078-3,2015. http://dx.doi.org/doi:10.1016/j.apcatb.2015.08.005
[3] Mirzaee, Sharareh, Yashar Azizian-Kalandaragh, and Parisa Rahimzadeh. “Modifiedco - precipitation process. effects on thestructural and magnetic properties of Mn-doped nickel ferrite nanoparticles." Solid State Sciences 99:106052,2020. https://doi.org/10.1016/j.solidstatesciences.2019.106052
[4] Kumar,E.Ranjith, et al. "Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles." Journal of magnetism and magnetic materials 355:87-92, 2014. https://doi.org/10.1016/j.jmmm.2013.11.051
[5] Ghazaleh Allaedini, SitiMasrinda Tasirin, PayamAminayi, Magnetic properties of cobaltferrite synthesized by hydrothermal method Int Nano Lett5:183–186,2015.doi: 10.1007/s40089-015-0153-8
[6] Seipati Rosemary Makhosi,WendyMdlalose,Amos Nhlapo and Moganavelli Singh Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer therapy Pharmaceutics 14, 937.,2022. https://doi.org/10.3390/pharmaceutics14050937
[7] Prakash Chand, SwapnilVaish, Praveen Kumar, Structural, optical and dielectric propertiesof Transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites. Phys.BCondens Matter.524, 53–63,2017.https://doi.org/10.1016/j.physb.2017.08.060.
[8] Raghu Ram N., Prakash M.,Naresh U. N. Suresh Kumar, T. SofiSarmash,T.Subbarao,R.JeevanKumar,G.RanjithKumar,K. Chandra Babu Naidu, Review on Magneto calori Effect and Materials, Journal of Superconductivity and Novel Magnetism 31 (2018) 1971-B 1979,2018.DOI:10.1007/s10948-018-4666-z
[9] U.Naresh,R. J. Kumar, K. Chandra Babu Naidu, Hydrothermal synthesis of BariumCopper ferrite nano-particles: Nanofiber’s formation,optical,and magneticproperties,Materials Chemistry and Physics236 ,121807,2019. https://doi.org/10.1016/j.matchemphys.2019.121807
[10] Akhtar, M., Hasan, M., Amin, N., Morley, N., & Arshad, M.I.Tuning structural ,electrical, dielectric, and magneti properties of Mg–Cu–Co ferrites via dysprosium (Dy3+) doping. Journal of Rare Earth.2023.https://doi.org/10.1016/j.jre.2023.01.021
[11] Aslam, A., Rehman, A. U., Amin, N., Amman, M., Akhtar, M.,Morley, N., Al-Sharif, M.S., Hessien, M., El-Nagdy, K. A., & Arshad, M. I. To study the structural,electrical, and magnetic properties of M (M = Mg2+, Mn2+, and Cd2+) doped Cu-Ni-Co-Laspinel ferrites. MaterialsChemistry and Physics, 294, 127034.2023. https://doi.org/10.1016/j.matchemphys.2022.127034
[12] Sartori, A.,Mazloom, J., Esmaeili Ghodsi,F.,& Boustani, K..Surfacemorphology,optical band gap, and magnetic behaviour of Cu(1-x)MnxFe2O4 nanofibresprepared by sol-gel electrospinning. Journal of Magnetism and Magnetic Materials,569,170397,2023. https://doi.org/10.1016/j.jmmm.2023.170397
[13] SheykhSamani, M., Sharifi, H., Sharifi, I. et al. Effect of Cu doping on the structural and magnetic properties of MnFe2O4 nanoparticles. Appl. Phys. A 129, 319, 2023. https://doi.org/10.1007/s00339-023-06503-6
[14] Abinaya, N., Robert, M. C., Srinivasan, N., &Saravanakumar, S. (2023). Electron density mapping and bonding in Mn-doped CoFe2O4using XRD, and its correlation with room temperature.
[15] Khan,T.F.,Naresh,U.,Ramaprasad,T. Structural,Morphological, and Magnetic Properties of Cobalt-Doped Nickel Ferrite nanoparticles. J Supercond Nov Magn 34, 797–803 ,2021. https://doi.org/10.1007/s10948-020-05788-5
[16] U.Naresh,R.J.Kumar,K.ChandraBabuNaidu,Optical,Magnetic and Ferroelectric Properties of Ba0.2Cu0.8-xLaxFe2O4 (x=0.2-0.6) Nanoparticles, Ceramics International 45, 7515-7523, 2019. https://doi.org/10.1111/ijac.13276
[17] Abubakar Wada, Aliyu Mohammad Aliyu, Dauda Abubakar, Ibrahim Maina, Muhammad Abbas Salisu, “Investigation of the Structural Properties of Chromium-Zinc Spinel Ferrite by Sol- Gel Technique,” Journal of Physics and Chemistry of Materials, Vol.10, Issue.2, pp.1-6, 2023.
[18] A.N. Nwori, L.N. Ezenwaka, I.E. Ottih, N.A. Okereke, N.S. Umeokwona, N.L. Okoli, I. O. Obimma, "Study of the optical and Solid-State Properties of Copper Manganese Sulphide (CuMnS) Thin Film Semiconductors for Possible optoelectronics Applications", Journal of Physics and chemistry of Materials, Vol.8, Issue.3, pp.23-33, 2021.
[19] T. Ramaprasad, R.J.Kumar,U.Naresh, M.Prakash, K.Chandra Babu Naidu, Effect of pH Value on Structural and Magnetic Properties of CuFe2O4 NanoparticlesSynthesized by Low Temperature Hydrothermal Technique, Materials Research Express 5, 095025,2018. DOI 10.1088/2053-1591/aad860
[20] U Naresh,RJeevan Kumar, T Ramaprasad “Optical properties of Copper ferrite nanoparticles synthesized via hydrothermal technique” Bulletin of Pure and Applied Sciences Section –D PhysicsNo.2, 2018.DOI: 10.5958/2320-3218.2018.00024.6
[21] Gao, L., Liu, Z., Ge, Y., Feng, C., Chu, M., & Tang, J. Synthesis and characterization of manganese ferrite MnxFe3-xO4 from ferruginous manganese ores by multi-step roasting and magnetic separation. Powder Technology, 356, 373-382, 2019. https://doi.org/10.1016/j.powtec.2019.08.032
[22] Aman, S., Tahir, M. B., Ahmad, N., Sherif, E. M., Ehsan, M. F., Ejaz, S. R., Khosa, R. Y., Sadaf, A., & Farid, H. M. T. Synthesis and characterization of copper-based spinel ferrites for high frequency applications. Journal of Magnetism and Magnetic Materials, 547, 168778, 2022. https://doi.org/10.1016/j.jmmm.2021.168778
[23] ValescaDonizetti de Oliveira, Rero Marques Rubingera, Manoel Ribeiro daSilvaa, AdhimarFlávioOliveira, Geovani Rodriguesa, Vander Alkmin dos Santos Ribeiro, Magnetic and Electrical Properties of MnxCu1-xFe2O4 Ferrite Materials Research. 19(4): 786-790, 2016.
Citation
U. Naresh, T. Ramprasad, Y. Saritha Kumari, S. Nagaveni, "Structural, Morphological and Magnetic Properties of Manganese-doped Copper Ferrite Nanoparticles," International Journal of Scientific Research in Physics and Applied Sciences, Vol.12, Issue.1, pp.1-6, 2024 -
Open Access Article
Capacity Imbalance and Diffusion Kinetic Between the Electrodes of Hybrid Supercapacitor: A Review
S.E. Umoru
Review Paper | Journal-Paper (IJSRPAS)
Vol.12 , Issue.1 , pp.7-23, Feb-2024
Abstract
The need for energy storage devices that have significant power and energy density, outstanding cycle stability and charging and discharging cycles, affordability, and excellent environmental protection has propelled the creation and advancement of hybrid supercapacitors. Because hybrid supercapacitor utilizes two types of electrodes made of different materials, the mechanisms of charge storage are also different and hence there are gaps in terms of capacity imbalance and diffusion kinetics. This work reviews the different promising methods or techniques that can be used to tackle these problems militating against the performance and commercialized applications of hybrid supercapacacitors. The control of electrodes open circuit voltage (OCV), utilization of redox couple materials, utilization of water in salt (WIS) electrolytes, the use of core-shell hybrid nanostructures, mass and Charge Balancing approach, Electrodes’ structural design and control, incorporating of two-dimensional carbon materials, utilization of Materials with Good conductivity, choosing an appropriate electrolyte are some of the different techniques reviewed in this work. This article also examines the difficulties associated with several approaches for future study aimed at enhancing hybrid supercapacitor functionality.Key-Words / Index Term
Hybrid supercapacitor, Energy storage device, Electrode, Electrolyte, capacity imbalance, diffusion kineticsReferences
[1] Remi and Kahwaji, ‘Supercapacitors: A short literature Review’, http://doi.org/10.13140/RG2.2.14032.35846, 2019
[2] Mia A M, RA Fahim, AE Shalan, ‘Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review’, Environmental Chemistry Letters. Vol.19, pp.375–439, 2021
[3] Wenhua Zuo, Ruizhi Li, Cheng Zhou, Yuanyuan Li, Jianlong Xia, Jinping Liu, ‘Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects’, Advanced Science,Vol. 4, Issue 7, pp. 1600539, 2017.
[4] Xingjiang Wu, Xude Yu, Zekai Zhang, Hengyuan Liu, SiDa Ling, Xueyan Liu, Cheng Lian, Jianhong Xu, ‘Anisotropic ZnS Nanoclusters/Ordered Macro-Microporous Carbon Superstructure for Fibrous Supercapacitor toward Commercial-Level Energy Density’, Advanced Functional Materials. 2023
[5] Bhaskar J. C, Harrison H M, Vijayanand S M, ‘Biomass blend derived porouscarbonforaqueous supercapacitors with commercial-level mass loadings and enhanced energy density in redox-active electrolyte’. Applied surface Science. Vol.601,Issue 1, pp. 154202, 2022
[6] Satpathy S, Neeraj K M, Dhirendra k S, Vishal G, Bidyut K B, Chandra SY, ‘An indepthstudy of the electrical characterization of supercapacitors for recent trends in energy storage system’, Journal of energy Storage. Vol.57, pp.106198, 2023.
[7] Manickam M and Wickramaarachchi K, ‘Electrochemical aspects of supercapacitors in perspective: From electrochemical configurations to electrode materials processing ‘, Progress in Solid State Chemistry. Vol.69, pp.100390, 2023
[8] Jihyeon Park, Seungju Jo , Narasimharao Kitchamsetti , Shakir Zaman , Daewon Kim ,’The development of NiCo2O4/PVP/PANI heterogeneous nanocomposites as an advanced battery type electrode material for high-performing supercapacitor application’, Journal of Alloys and Comounds. Vol.926, issue 10, pp.166815, 2023
[9] K. Karuppasamy , Dhanasekaran Vikraman, Ranjith Bose, Sajjad Hussain, P. Santhoshkumar, Rmu Manikandan , Jongwan Jung , Saeed Alameri , Akram Alfantazi , Hyun-Seok Kim, ‘Unveiling the redox electrochemical kinetics of interconnected wrinkled microspheres of binary Cu2-xSe/Ni1-xSe as battery-type electrode for advanced supercapatteries’, Journal of colloid and interface science, Vol.654, Part B, pp.1098-1110, 2023
[10] Ji Ma , Yangzhan Xu b, Jinkang Liu, Shitong Yang, Mengxiang Chen , Daoying Zheng , Pengkai He b Chunlei Dingb, Chunting Liu, ‘Effect of electrode pores on potassium-ion storage of ?-Fe2O3’, Journal of Energy Storage, Vol.74, Part B, pp.109554, 2023.
[11] Madhusoodhanan Lathika Divya, Yun-Sung Lee, Vanchiappan Aravindan, ‘Glyme solvated Na and Li-ion capacitors based on co-intercalation process using pencil graphite as battery type electrode’, Journal of Power Sources. Vol.543, pp.231823, 2023
[12] Xiyue He, Xuelai Zhan, ‘A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials’, Journal of Energy Storage, pp. 106023, 2022.
[13] Faxing Wang., ‘Design and synthesis of electrode materials with both battery-type and capacitive charge storage’, Energy Storage Materials, Vol.22, pp. 235-255, 2019.
[14] Bailmare DB , P Khajanji and Abbay D Deshmukh, ‘ Multidimensional Graphene-Based Advanced Materials for Electrochemically Stable Supercapacitors’, CRC Press ( Taylor and Francis Group), 2022
[15] Shiyue Cao, Qiming Liu, Hongyi Chen, Huijuan Zhu, Yirui Liu, ‘A bimetallic induced enhanced 3D electron transport network supported by micro constrain area of balls-in-ball structure used for high performance sodium storage’, Chemical Engineering Journal. Vol.470, pp.144277, 2023.
[16] Syed Shaheen Shah, Md. Abdul Aziz, Muhammad Usman, Abbas Saeed Hakeem, Shahid Ali, Atif Saeed Alzahrani ,‘Biomass-based Supercapacitors: Lab to Industry’, Wiley online library, DOI: https://doi.org/10.1002/9781119866435.ch25, 2023
[17] Li P, Y Peng, J Cai, Y Bai, Q Li, H Pang , ‘Recent Advances in Metal–Organic Frameworks (MOFs) and Their Composites for Non-Enzymatic Electrochemical Glucose Sensors’, Bioengineering . Vol.10 , issue 6,, pp.733, 2023
[18] Subramani IG, V Perumal, SCB Gopinath, Khor Shing Fhan, & Norani Muti Mohamed,’ Organic-Inorganic Hybrid Nanoflower Production and Analytical Utilization: Fundamental to Cutting-Edge Technologies’ Critical Reviews in Analytical Chemist. Pp. 1488-1510, 2021.
[19] Zhou, Y., Y. Huang, J. Pang, and K. Wang, ‘Remaining useful life prediction for supercapacitor based on long short-term memory neural network’. Journal of Power Sources , Vol.440, pp.227149. doi:10.1016/j.jpowsour..227149, 2019..
[20] Yang, J., C. Yu, X. Fan, and J. Qiu.’3D architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors’, Advanced Energy Materials Vol.4, Issue 18, pp.1400761. 2014.
[21] Ding, J., H. L. Wang, Z. Li, K. Cui, D. Karpuzov, X. H. Tan, A. Kohandehghan, and D. Mitlin., ‘Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors’, Energy & Environmental Science Vol.8, issue 3, pp.941–55., 2015..
[22] Luo, J. M., W. K. Zhang, H. D. Yuan, C. B. Jin, L. Y. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, Y. P. Gan, et al. ,’Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors’. ACS Nano Vol.11, Issue 3, pp.2459–69.2017..
[23] Kim, N. R., S. M. Lee, M. W. Kim, H. J. Yoon, W. G. Hong, H. J. Kim, H. J. Choi, H. J. Jin, and Y. S. Yun, ‘Amphicharge-storable pyropolymers containing multitiered nanopores’, Advanced Energy Materials , Vol.7, Issue 19, pp.:1700629, 2017.
[24] Won, J. H., H. M. Jeong, and J. K. Kang., ‘Synthesis of nitrogen-rich nanotubes with internal compartments having open mesoporous channels and utilization to hybrid full-cell capacitors enabling high energy and power densities over robust cycle life’, Advanced Energy Materials , Vol.7, Issue 1, pp.1601355, 2017.
[25] Zhang, S. W., B. S. Yin, X. X. Liu, D. M. Gu, H. Gong, and Z. B. Wang, ‘ A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches’; Nano Energy, Vol. 59, pp.41–49, 2019.
[26] ang, B., J. Chen, S. Lei, R. Guo, H. Li, S. Shi, and X. Yan, ‘Spontaneous growth of 3D framework carbon from sodium citrate for high energy-and power-density and long-life sodium-ion hybrid capacitors’, Advanced Energy Materials Vol.8, Issue 10, pp.1702409, 2018.
[27] T., S. Sun, X. Liu, C. LiaYng, G. Wang, and H. Xia., “Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance’, Advanced Materials Vol.30, pp.1706640, 2018
[28] Qiu, D., J. Guan, M. Li, C. Kang, J. Wei, Y. Li, Z. Xie, F. Wang, and R. Yang, ‘ Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors’, Advanced Functional Materials Vol.29, Issue 32, pp.1903496, 2019.
[29] Zoller, F., J. Luxa, T. Bein, D. Fattakhova-Rohlfing, D. Bousa, and Z. Sofer, ‘ Flexible freestanding MoS2-based composite paper for energy conversion and storage’, Beilstein Journal of Nanotechnology Vol.10, pp.1488–96, 2019
[30] Aravindan, V., J. Gnanaraj, Y.-S. Lee, and S. Madhavi, ‘Insertion-Type electrodes for nonaqueous Li-Ion capacitors’, Chemical Reviews Vol.114, issue 23, pp.11619–35, 2014.
[31] Xia, G., Y. Huang, F. Li, L. Wang, J. Pang, L. Li, and K. Wang, ‘A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging’, Frontiers of Chemical Science and EngineeringVol. 14 , Issue 6, pp.1039–51, 2020
[32] Van Aken, K. L., M. Beidaghi, and Y. Gogotsi, ‘Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors’, Angewandte Chemie International Edition Vol.54, Issue 16, pp.4806–09, 2015.
[33] Weng, Z., F. Li, D. W. Wang, L. Wen, and H. M. Cheng, ‘Controlled electrochemical charge injection to maximize the energy density of supercapacitors’, Angewandte Chemie International Edition Vol.52, Issue 13, pp.3722–25, 2013
[34] Shan, X. Y., Y. Z. Wang, D. W. Wang, F. Li, and H. M. Cheng, ‘Armoring graphene cathodes for high-rate and long-life lithium ion supercapacitors’, Advanced Energy Materials Vol. 6, Issue6, pp.1502064, 2016
[35] Wu, Y. T., H. Chen, Y. Z. Lu, J. Yang, X. Q. Zhu, Y. Zheng, G. B. Lou, Y. T. Wu, Q. Wu, Z. H. Shen, Pan, Z. H., et al , ‘Rational design of cobalt-nickel double hydroxides for flexible asymmetric supercapacitor with improved electrochemical performance’, Journal of Colloid and Interface Science Vol. 581, pp.455–64, 2021.
[36] Ye, L., Q. H. Liang, Y. Lei, X. L. Yu, C. P. Han, W. C. Shen, Z. H. Huang, F. Y. Kang, and Q. H. Yang, ‘A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform’, Journal of Power Sources Vol. 282, pp.174–78, 2015
[37] Lim, E., H. Kim, C. Jo, J. Chun, K. Ku, S. Kim, H. I. Lee, I.-S. Nam, S. Yoon, K. Kang, et al., ‘Advanced hybrid supercapacitor based on a mesoporous Niobium Pentoxide/Carbon as high-performance anode’, ACS Nano Vol. 8 , Issue 9, pp.8968–78, 2014.
[38] Wang, R. T., J. W. Lang, P. Zhang, Z. Y. Lin, and X. B. Yan, ‘Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors’, Advanced Functional Materials Vol. 25, Issue15, pp.2270–78, 2015
[39] Wang, H. W., Y. Zhang, H. X. Ang, Y. Q. Zhang, H. T. Tan, Y. F. Zhang, Y. Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, et al., ‘A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode’, Advanced Functional Materials Vol. 26, Issue 18, pp.3082–93, 2016
[40] Evanko, B., S. W. Boettcher, S. J. Yoo, and G. D. Stucky, ‘Redox-Enhanced electrochemical capacitors: Status, opportunity, and best practices for performance evaluation’, ACS Energy Letters Vol. 2, 11, pp.2581–90, 2017
[41] Chen, L. B., Y. R. Chen, J. F. Wu, J. W. Wang, H. Bai, and L. Li, ‘Electrochemical supercapacitor with polymeric active electrolyte’, Journal of Materials Chemistry A, Vol. 2, Issue 27, pp.10526–31, 2014.
[42] Cho, S. Y., H. J. Yoon, N. R. Kim, Y. S. Yun, and H. J. Jin,’Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms. Journal of Power Sources, Vol. 329, pp.536–45, 2016.
[43] Suo, L., O. Borodin, Y. Wang, X. Rong, W. Sun, X. Fan, S. Xu, M. A. Schroeder, A. V. Cresce, F. Wang, et al., “Water-in-Salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting’, Advanced Energy Materials Vol. 7, Issue 21, pp.1701189, 2017
[44] Gambou-Bosca, A., and D. Bélanger. ‘Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors’, Journal of Power Sources Vol. 326, pp.595–603, 2016
[45] Ansari, ‘Recent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential application’, Materialstody. Vol. 64, pp.180-208, 2023.
[46] Sahil Sharma, Kushal Qanungo (2023); A review on graphene in energy devices; AIP Publishing. AIP Conference Proceedings, Vol. 2535, Issue1, pp. 030012, 2023
[47] Nimra Muzaffar , Amir Muhammad Afzal a, H.H. Hegazy b c, Muhammad Waqas Iqbal, ‘Recent advances in two-dimensional metal-organic frameworks as an exotic candidate for the evaluation of redox-active sites in energy storage devices;’, Journal of Energy Storage, Vol.64, pp.107142, 2023
[48] Naoi, K., S. Ishimoto, J. Miyamoto, and W. Naoi, ‘Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices. Energy & Environmental Science, Vol. 5 , Issue 11, pp.12334, 2012
[49] Feng Z., X. Jiang, X. Tian, F. Zheng, M. Cheng, E. Zhao, W. Ye, Y. Qin, and Y. Zhang, ‘Ultratransparent PMN-PT electro-optic ceramics and its application in optical communication ‘, Advanced Optical Materials Vol. 9, Issue 13, pp. 2002139, 2021.
[50] Zhang,P., B. Y. Guan, L. Yu, and X. W. Lou, ‘Formation of double-shelled Zinc-Cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angewandte Chemie International Edition , Vol.56, Issue 25, pp.7141–45, 2017.
[51] Yu M. H., Y. Z. Lu, H. B. Zheng, and X. H. Lu, ‘New insights into the operating voltage of aqueous supercapacitors’, Chemistry-A European Journal Vol. 24 , Issue15, pp.39–49, 2018
[52] Zhang, P., B. Y. Guan, L. Yu, and X. W. Lou, ‘Formation of double-shelled Zinc-Cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors’, Angewandte Chemie International Edition Vol. 56, Issue25, pp.7141–45, 2017.
[53] Van Aken, K. L., M. Beidaghi, and Y. Gogotsi, ‘Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors’, Angewandte Chemie International Edition Vol. 54, Issue 16, pp.4806–09, 2015
[54] Weng, Z., F. Li, D. W. Wang, L. Wen, and H. M. Cheng, ‘Controlled electrochemical charge injection to maximize the energy density of supercapacitors’, Angewandte Chemie International Edition , Vol. 52, Issue 13, pp. 3722–25, 2013.
[55] Huang, Y. L., Y. X. Zeng, M. H. Yu, P. Liu, Y. X. Tong, F. L. Cheng, and X. H. Lu, ‘Recent smart methods for achieving high-energy asymmetric supercapacitors’, Small Methods, Vol.2, Issue 2, pp. 1700230, 2018.
[56] Chang Liu, Baowei Wang, Laiqiang Xu, Kangyu Zou, Wentao Deng, Hongshuai Hou, Guoqiang Zou, and Xiaobo Ji, ‘Novel Nonstoichiometric Niobium Oxide Anode Material with Rich Oxygen Vacancies for Advanced Lithium-Ion Capacitors’, ACS Applied Materials & Interfaces. Vol.15, pp.4, 2023.
[57] Francesco Bizzotto, Walid Dachraoui, Rabeb Grissa, Wengao Zhao, Francesco Pagani, Edouard Querel, Ruben-Simon Kühnel, Corsin Battaglia’, Modification of NMC811 with titanium for enhanced cycling and high-voltage stability. Electrochimica Acta. Vol. 462, pp. 142758, 2023
[58] Hanping Xu, Jingqiao Zhu, Mincai Xu, Zijie Lei, Qiangli Hu, Xiaojuan Jin, ‘Flexible and alternately layered high electrochemical active electrode based on MXene, carboxymethylcellulose, and carbon nanotube for asymmetric micro-supercapacitors’, Journal of Colloid and Interface Science . Vol. 645, pp. 974-984, 2023.
[59] Jochen Bernhard Gerschler, Dirk Uwe Sauer, ‘Investigation of Open-Circuit-Voltage Behaviour of Lithium-Ion Batteries with Various Cathode Materials under Special Consideration of Voltage Equalisation Phenomena’, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Germany,pp.17-19, 2009.
[60] Du Pasquier, A., A. Laforgue, P. Simon, G. G. Amatucci, and J. F. Fauvarque, ‘A nonaqueous asymmetric hybrid Li4 Ti5O12/poly(fluorophenylthiophene) energy storage device’, Journal of the Electrochemical Society Vol.149, Issue 3, pp.A302–A306. 2002.
[61] Li, Z., Y. Zhang, X. Li, F. Gu, L. Zhang, H. Liu, Q. Xia, Q. Li, W. Ye, C. Ge, et al., ‘Reacquainting the electrochemical conversion mechanism of FeS2 sodium-ion batteries by operando magnetometry’, Journal of the American Chemical Society. Vol. 143, Issue 32, pp.12800–08, 2921
[62] Lingfang Chen, Jun Huang, Rong Zeng, Yushuai Xiong, Junchao Wei, Kai Yuan, ‘Regulating Voltage Window and Energy Density of Aqueous Asymmetric Supercapacitors by Pinecone-Like Hollow Fe2O3/MnO2 Nano-Heterostructure’,Advanced Materials Interfaces. Vol. 7, Issue 2, 1901729, 2019.
[63] Yuan, D., C. Zhang, S. Tang, Z. Wang, Q. Sun, X. Zhang, T. Jiao, and Q. Zhang, ‘ Ferric ion-ascorbic acid complex catalyzed calcium peroxide for organic wastewater treatment: Optimized by response surface method’, Chinese Chemical Letters, Vol. 32, Issue 11, pp.3387–92. 2021.
[64] Akinwolemiwa, B., C. Peng, and G. Z. Chen, ‘Redox Electrolytes in Supercapacitors’, Journal of the Electrochemical Society, Vol. 162, Issue 5, pp.A5054–A5059, 2015.
[65] Roldan, S., M. Granda, R. Menendez, R. Santamaria, and C. Blanco, ‘Mechanisms of energy storage in carbon-based supercapacitors modified with a Quinoid Redox-Active electrolyte’, Journal of Physical Chemistry C, Vol. 115, Issue 35, pp.17606–11, 2011.
[66] Chen, L. B., H. Bai, Z. F. Huang, and L. Li, ‘Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors’, Energy & Environmental Science, Vol. 7, 5, pp.1750–59, 2014
[67] Zhang, S. W., B. S. Yin, X. X. Liu, D. M. Gu, H. Gong, and Z. B. Wang, ‘A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches’, Nano Energy, Vol. 59, pp. 41–49, 2019
[68] Patil, A. M., X. W. An, S. S. Li, X. Y. Yue, X. Du, A. Yoshida, X. G. Hao, A. Abudula, and G. Q. Guan, ‘Fabrication of three-dimensionally heterostructured rGO/WO3 center dot 0.5H(2)O@Cu2S electrodes for high-energy solid-state pouch-type asymmetric supercapacitor’, Chemical Engineering Journal, Vol. 403, pp.17, 2021
[69] Hwang, J. Y., M. F. El-Kady, M. P. Li, C. W. Lin, M. Kowal, X. Han, and R. B. Kaner, ‘Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte’, Nano Today, Vol. 15, pp.15–25, 2017
[70] Chodankar, N. R., D. P. Dubal, A. C. Lokhande, A. M. Patil, J. H. Kim, and C. D. Lokhande, ‘An innovative concept of use of redox-active electrolyte in asymmetric capacitor based on MWCNTs/MnO2 and Fe2O3 thin films’, Scientific Reports, Vol. 6, pp. 39205, 2016
[71] Cui, Z., L. Wang, Q. Li, and K. Wang, ‘A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network’, International Journal of Energy Research, pp. 1–18, 2021
[72] Yu Zhang , Han Hu , Zhiliang Wang , Bin Luo , Wei Xing , Li Li , Zifeng Yan , Lianzhou Wang, ‘Boosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancing’, Nano Energy. Vol. 68, pp. 104226, 2020
[73] Yuan Wang, Hong Huang, Yingsen Fang, Hu Pan, Zhangfeng Shen, Yangang Wang, Xi Li, ‘Enhancement of Zn-ion hybrid supercapacitors by using dual redox-active ions electrolytes’, Chemical Engineering Journal, Vol. 445, pp. 136796, 2022.
[74] Suo, L., O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, and K. Xu, “Water-in-salt electrolyte enables high-voltage aqueous lithium-ion chemistries”, Science, Vol. 350, Issue 6263, pp. 938–43, 2015.
[75] Suo, L., O. Borodin, Y. Wang, X. Rong, W. Sun, X. Fan, S. Xu, M. A. Schroeder, A. V. Cresce, F. Wang, et al., “Water-in-Salt electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting”, Advanced Energy Materials, Vol. 7, Issue 21, pp. 1701189, 2017.
[76] Hasegawa, G., K. Kanamori, T. Kiyomura, H. Kurata, T. Abe, and K. Nakanishi, ‘Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors’, Chemistry of Materials, Vol. 28, Issue 11, pp. 3944–50, 2016.
[77] Reber, D., R. S. Kuhnel, and C. Battaglia, ‘High-voltage aqueous supercapacitors based on NaTFSI’, Sustainable Energy & Fuels, Vol. 1, Issue 10, pp. 2155–61, 2017.
[78] Gambou-Bosca, A., and D. Bélanger, ‘Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors’, Journal of Power Sources, Vol. 326, pp. 595–603, 2016.
[79] Zhang, H., Chen, B., Banfield, J. F., and Waychunas, G. A, ‘Atomic structure of nanometer-sized amorphous TiO2. Physical Review B, Vol. 78, Issue 21, pp. 214106, 2018
[80] Fang Z., X. Jiang, X. Tian, F. Zheng, M. Cheng, E. Zhao, W. Ye, Y. Qin, and Y. Zhang, ‘Ultratransparent PMN-PT electro-optic ceramics and its application in optical communication’, [J]. Advanced Optical Materials, Vol. 9, Issue 13, pp. 2002139, 2021.
[81] Wang, K., C. Liu, J. Sun, K. Zhao, L. Wang, J. Song, C. Duan, and L. Li, ‘State of charge estimation of composite energy storage systems with supercapacitors and lithium batteries’, Complexity Vol.20, pp.8816250, 2021a
[82] Wang, W., J. Pang, J. Su, F. Li, Q. Li, X. Wang, J. Wang, B. Ibarlucea, X. Liu, and Y. Li, et al, ‘Applications of nanogenerators for biomedical engineering and healthcare systems’, InfoMat. 2021.
[83] Wang, W. L., Y. H. Li, L. W. Li, L. C. Wang, and K. Wang, ‘SnO2/TiO2 nanocomposite prepared by pulsed laser deposition as anode material for flexible Quasi-solid-state lithium-ion batteries’, International Journal of Electrochemical Science, Vol. 15, Issue 12, pp. 11709–22, 2021
[84] Zhao, J. C., F. J. Li, Z. L. Wang, P. Dong, G. T. Xia, and K. Wang, ‘Flexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoring’, Journal of Materials Science: Materials in Electronics, Vol. 32, Issue11, pp.14715–27, 2021
[85] Xu, H., H. Du, L. Kang, Q. Cheng, D. N. Feng, and S. Xia, ‘Constructing straight pores and improving mechanical properties of gangue-based porous ceramics’, Journal of Renewable Materials, Vol.9, Issue12, pp. 2129–41, 2021
[86] Thangavel, R.; Kaliyappan, K.; Kang, K.; Sun, X.; Lee, Y.-S, ‘Going beyond lithium hybrid capacitors: Proposing a new highperforming sodium hybrid capacitor system for next-generation hybrid vehicles made with bio-inspired activated carbon. Adv.Energy Mater, Vol. 6, pp. 1502199, 2016.
[87] Zheng, Y.; Zhao, W.; Jia, D.; Liu, Y.; Cui, L.; Wei, D.; Zheng, R.; Liu, J, ‘Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material’, Chem. Eng. J. , Vol. 387, pp.124161, 2020
[88] Zhang, C.; Xu, Y.; Du, G.; Wu, Y.; Li, Y.; Zhao, H.; Kaiser, U.; Lei, Y, ‘Oxygen-functionalized soft carbon nanofibers as highperformance cathode of K-ion hybrid capacitor’, Nano Energy, Vol. 72, pp. 104661, 2020
[89] Thangavel, R.; Kannan, A.G.; Ponraj, R.; Yoon, G.; Aravindan, V.; Kim, D.-W.; Kang, K.; Yoon, W.-S.; Lee, Y.-S, ‘Surface enriched graphene hollow spheres towards building ultra-high power sodium-ion capacitor with long durability’, Energy Storage Mater, Vol. 25, pp. 702–713, 2020
[90] Xu, J.; Liu, Z.; Zhang, F.; Tao, J.; Shen, L.; Zhang, X, ‘Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor’, RSC Adv, Vol. 10, pp. 7780–7790, 2020.
[91] Ruan, J.; Mo, F.; Chen, Z.; Liu, M.; Zheng, S.; Wu, R.; Fang, F.; Song, Y.; Sun, D, ‘Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors’, Adv. Energy Mater, Vol.10, pp. 1904045, 2020
[92] H. Zhang, X. Qin, J. Wu, Y.-B. He, H. Du, B. Li and F. Kang, J. Mater. Chem. A,Vol. 3, pp,7112-7120, 2015
[93] Narasimharao Kitchamsetti, Manopriya Samtham, Diwakar Singh, Ekta Choudhary, Sachin R. Rondiya , Yuan-Ron Ma e Russell W. Cross , Nelson Y. Dzade, Rupesh S. Devan, ‘Hierarchical 2D MnO2@1D mesoporous NiTiO3 core-shell hybrid structures for high-performance supercapattery electrodes Theoretical and experimental investigations’, Journal of Electroanalytical Chemistry, Vol. 936, pp. 117359, 2023
[94] S. Chandra Sekhar, Goli Nagaraju, Bhimanaboina Ramulu, Sk. Khaja Hussain, D. Narsimulu, Jae Su Yu, Multifunctional core-shell-like nanoarchitectures for hybrid supercapacitors with high capacity and long-term cycling durability’, Nano Research, Vol. 12, pp.2597–2608, 2019.
[95] Doha M. Sayed , Manar M. Taha, Loujain G. Ghanem, Mohamed S. El-Deab, Nageh K. Allam, ‘Hybrid supercapacitors: A simple electrochemical approach to determine optimum potential window and charge balance’, Journal of Power Sources. Vol. 480, pp. 229152, 2020.
[96] Xiaoyu Bi, Meichun Li, Guoqiang Zhou, Chaozheng Liu, Runzhou Huang, Yang Shi, Ben Bin Xu, Zhanhu Guo, Wei Fan, Hassan Algadi & Shengbo Ge, ‘High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode’, Nano Research. Vol. 16, pp.7696–7709, 2023.
[97] Ziyue Zhao , Lidong Sun, Yu Li, Wei Feng, ‘Polymer-derived carbon materials for energy storage devices: A mini review’, Carbon, Vol. 210, pp. 118066, 2023.
[98] Tianzhao Hu, Juan Li, Yuzuo Wang, Zhenhua Sun, Qun Xu, Feng Li, ‘Coupling between cathode and anode in hybrid charge storage’, Joule. Vol. 7, Issue 6, pp. 1176-1205, 2023.
[99] Molahalli Vandana, Kiran Bijapur, Gowri Soman, Gurumurthy Hegde, ‘Recent advances in the development, design and mechanism of negative electrodes for asymmetric supercapacitor applications’, Critical Reviews in Solid State and Materials Sciences, 2023
[100] Shivang Beniwal, Shivang Beniwal, Ankush Kumar, Ramesh Kumar, Atif Suhail, Monojit Bag, ‘Tuning Conductivity of Lead-Free Cs2AgBiBr6 Double Perovskite Ternary Composite with PEDOT:PSS and Carbon Black for Supercapacitor Application’, American Chemical Society(ACS) Publications, 2023
[101] Narasimharao Kitchamsetti, Daewon Kim, “High performance hybrid supercapacitor based on hierarchical MOF derived CoFe2O4 and NiMn2O4 composite for efficient energy storage”, Journal of Alloys and Compounds. Vol. 959,pp. 170483, 2023
[102] A.G. Olabi, Tabbi Wilberforce, Enas Taha Sayed, Ahmed G. Abo-Khalil , Hussein M. Maghrabie, Khaled Elsaid, Mohammad Ali Abdelkareem, “Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission”,; Energy. Vol. 254, Part A, pp. 123987, 2022
[103] KaranKamleshbhai Patel, Tushar Singhal, Varun Pandey, T.P. Sumangala, M.S. Sreekanth, “Evolution and recent developments of high performance electrode material for supercapacitors: A review”, Journal of Energy Storage. Vol. 44, Part B, pp. 103366, 2021
[104] Krzysztof Fic, Sylwia Sroka, Przemyslaw Galek, Jakub Menzel, Anetta Platek-Mielczarek, “Fundamentals and implication of PZC determination for activated carbons in aqueous electrolytes”, Reaearch Square, 2023
[105] Doha M. Sayed a b, Manar M. Taha, Loujain G. Ghanem, , Mohamed S. El-Deab, Nageh K. Allam, “ Hybrid supercapacitors: A simple electrochemical approach to determine optimum potential window and charge balance”, Journal of Power Sources Vol. 480,pp. 229152, 2020.
[106] Navid Saeidi, Falk Harnisch, Volker Presser, , Frank-Dieter Kopinke, Anett Georgi, “Electrosorption of organic compounds: State of the art, challenges, performance, and perspectives”, Chemical Engineering Journal. Vol. 471,pp. 144354. 2023
[107] Zambaga Otgonbayar , Sunhye Yang , Ick-Jun Kim , Won-Chun Oh, “Recent advances in 2D MXene and solid state electrolyte for energy storage applications: Comprehensive review”, Chemical Engineering Journal.Vol. 472, pp. 144801, 2023
[108] Mohd Shoeb , Fouzia Mashkoor , Mohammad Naved Khan , Abdul Hakeem Anwer, Sharique Ahmad , Hoon Yi , Changyoon Jeong, “Unraveling the electrochemical properties and charge storage mechanisms of lactobacillusmediated synthesized RGO-titanium silver nanocomposite as a promising binder free electrode for asymmetric supercapacitor device”, Journal of Alloys and Compounds . 964, 171188, 2023.
[109] Jun Feng, Natasha AChernova, M Stanley, “Effect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-on battery electrode and activated carbon”, Journal of solid state Electrochemistry, Vol. 22, pp. 1063 – 1078, 2018.
[110] Tianzhao Hu, Juan Li, Yuzuo Wang, Zhenhua Sun, Qun Xu, Feng Li , “ Coupling between cathode and anode in hybrid charge storage”, Star Protocol, VOL. 7, ISSUE 6, PP. 1176-1205, 2023..
[111] .Xuena Xu , Yumin Qian, Chunting Wang, Zhongchao Bai, Chenggang Wang, Ming Song, Yi D, Xun Xu, Nana Wang, Jian Yang, Yitai Qian , Shixue Dou, “Enhanced charge transfer and reaction kinetics of vanadium pentoxide for zinc storage via nitrogen interstitial doping”, Chemical Engineering Journal, Vol. 451, Part 3, pp. 138770, 2023
[112] .Wenqi Yan, Yusong Zhu, Lili Liu, Lijun Fu, Yuhui Chen, Nengfei Yu, Yuping Wu, Bin Wang, Rui Xiao , “Li4Ti5O12 Coating on Copper Foil as Ion Redistributor Layer for Stable Lithium Metal Anode”, Advanced Energy Materials, Vol. 12, Issue 13 , pp. 2103112, 2022
[113] Guilin Tang, Xinyu Zhang, Bin Tian, Panwang Guo, Jing Liang, Wei Wu, “Hollow heterogeneous CuSe @MnSe for high-performance pointed flexible supercapacitor”, Chemeical engineering journal vol. 471,pp. 144590, 2023
[114] .Bingqiu Liu, Qi Zhang, Zhanshuang Jin, Lingyu Zhang, Lu Li, Zhigang Gao, Chungang Wang, Haiming Xie, Zhongmin Su ,”Uniform Pomegranate-Like Nanoclusters Organized by Ultrafine Transition Metal Oxide@Nitrogen-Doped Carbon Subunits with Enhanced Lithium Storage Properties”, Advanced Energy Materials. Vol. 8, Issue 7, 1702347, 2017
[115] . Irene Papiano, Simona De Zio, André Hofer, Marco Malferrari, Ignacio Mínguez BachoJulien Bachmann, Stefania Rapino, Nicolas Vogel, Guilia Magnabosco ,”Nature-inspired functional porous materials for low-concentration biomarker detection”, Materials Horizons, 2023
[116] .Bing Ding, Changzhou Yuan, Laifa Shen, Guiyin Xu, Ping Nie, Qingxue Lai, Xiaogang Zhang ,”Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries”, Journal of Material Chemistry A. DOI: https://doi.org/10.1039/C2TA00396A, 2012.
[117] .Vaishali Shrivastav ,Mansi,Bhavana Gupta ,Prashant Dubey ,Akash Deep, Wojciech Nogala ,Vishal Shrivastav, Shashank Sundriyal ,”Recent advances on surface mounted metal-organic frameworks for energy storage and conversion applications: Trends, challenges, and opportunities”, Advances in Colloid and Interface Science. Vol.318, pp.102967, 2023
[118] .Xinru Tang, Nan Li, Huan Pang ,”Metal-organic Framework-derived metal phosphides for electrochemistry applications”, Green Energy and Environment. Vol. 7, Issue 4,pp. 636-669, 2022.
[119] . M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C. P. Grey, B. Dunn , P. Simon ,” Efficient storage mechanisms for building better supercapacitors”, Nature Energy, pp. 16070, 2016
[120] Zhihong Bi, Qingqiang Kong, Yufang Cao, Guohua Sun, Fangyuan Su, Xianxian Wei, Xiaoming Li, Aziz Ahmad, Lijing Xie, Cheng-Meng Chen, “Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review”, Journal of Materials Chemistry A. DOI: https://doi.org/10.1039/C9TA04436A, 2019
[121] Zhongling Cheng, Hao Jiang, Xinlin Zhang, Fangyi Cheng, Minghong Wu, Haijiao Zhang , “Fundamental Understanding and Facing Challenges in Structural Design of Porous Si-Based Anodes for Lithium-Ion Batteries”, Advanced Functional Materials. Vol. 33, Issue 26, pp. 2301109, 2023.
[122] .Ting Jin, Qingqing Han, “Binder-Free Electrodes for Advanced Sodium-Ion Batteries” Advanced Materials. Vol. 32, 3, pp. 1806304, 2019
[123] . Pengfei Hao, Ting Zhu, Qiong Su, Jiande Lin, Rong Cui, Xinxin Cao, Yaping Wang, and Anqiang Pan, ‘Electrospun Single Crystalline Fork-Like K2V8O21 as High-Performance Cathode Materials for Lithium-Ion Hybrid Supercapacitor”, PMID: pp. 29911101, 2023
[124] .Zhang, X.; Pei, Z.; Wang, C.; Yuan, Z.; Wei, L.; Pan, Y.; Mahmood, A.; Shao, Q.; Chen, Y. “Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics”, Small, Vol. 15, pp. 1903817, 2019.
[125] .Hu, X.; Zhong, G.; Li, J.; Liu, Y.; Yuan, J.; Chen, J.; Zhan, H.; Wen, Z. “Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor”, Energy Environ. Sci. Vol. 13,pp. 2431–2440, 2020
[126] .Yang, D.; Zhao, Q.; Huang, L.; Xu, B.; Kumar, N.A.; Zhao, X.S. “Encapsulation of NiCo2O4 in nitrogen-doped reduced grapheme oxide for sodium ion capacitors”, J. Mater. Chem. A , Vol. 6, pp. 14146–14154. 2019
[127] .Yi, Y.; Sun, Z.; Li, C.; Tian, Z.; Lu, C.; Shao, Y.; Li, J.; Sun, J.; Liu, Z.” Designing 3D biomorphic nitrogen-doped MoSe2/grapheme composites toward high-performance potassium-ion capacitors”, Adv. Funct. Mater., Vol.30, pp. 1903878, 2020
[128] .Zhan, C.; Liu, W.; Hu, M.; Liang, Q.; Yu, X.; Shen, Y.; Lv, R.; Kang, F.; Huang, Z.-H. “High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: Surpassing the performance of lithium-ion capacitors in a uniform system”, NPG Asia Mater. Vol.10, pp. 775–787, 2018.
[129] .Lei Wen, Feng Li, Hui-Ming Cheng, “Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices”, Advanced Materials. Vol. 28, Issue 22, pp. 4306-4337, 2016
[130] .Eunji Choi, Dr. Ohchan Kwon, Choong Hoo Lee, Prof. Dae Woo Kim, “Metal-Organic Framework Membrane Hybridized with Graphitic Materials for Gas Separation”, European Chemical Societies Publishing. Vol.88, Issue 8, pp. 202300173, 2023.
[131] .Moumita Kotal, Sonu Jakhar, Sandipan Roy, Harish K. Sharma ,”Cathode materials for rechargeable lithium batteries: Recent progress and future prospects”, Journal of Energy Storage..Vol. 47, pp. 103534, 2021.
[132] . Chen Chen, Ying Huang, Mengwei Lu, Jiaxin Zhang, Tiehu Li, “Tuning morphology, defects and functional group types in hard carbon via phosphorus doped for rapid sodium storage”, Carbon. Vol. 183, pp. 415-427, 2021.
[133] .Yu Yuan 1, Ziwei Chen 1, Haoxiang Yu, Xikun Zhang, Tingting Liu, Maoting Xia, Runtian Zheng, Miao Shui, Jie Shu; “Heteroatom-doped carbon-based materials for lithium and sodium ion batteries”, Energy Storage Materials. Vol. 32, pp. 65-90, 2020.
[134] . Guohao Li, Brian C. Wyatt, Fei Song, Changqiang Yu, Zhenjun Wu, Xiuqiang Xie, Babak Anasori, “2D Titanium Carbide (MXene) Based Films: Expanding the Frontier of Functional Film Materials”, Advanced Functional Materials. Vol. 31, Issue 46, 2105043, 2021.
[135] . Somnath R. Khaladkar, Oshnik Maurya, Girish Gund, Bhavesh Sinha, Deepak Dubal, R.R. Deshmukh, Archana Kalekar, “Improving the charge kinetics through in-situ growth of NiSe nanoparticles on g-C3N4 nanosheets for efficient hybrid supercapacitors”, Journal of Energy Chemistry, Vol. 87, pp. 304-313, 2023
[136] . Hua Zhang , “Ultrathin Two-Dimensional Nanomaterials”, ACS Nano . Vol. 9, Issue 10, pp. 9451–9469, 2015
[137] .Chao Han, Xinyi Wang, Jian Peng, Qingbing Xia, Shulei Chou, Gang Cheng, Zhenguo Huang, Weijie Li “Recent Progress on Two-Dimensional Carbon Materials for Emerging Post-Lithium (Na+, K+, Zn2+) Hybrid Supercapacitors”,Polymers. Vol. 13, Issue 13, pp. 2137, 2022.
[138] . Harikrishnan M.P, A. Chandra Bose ,”Recent Advances and Future Perspectives of VS4 and Its Nanostructure Composites for Supercapacitor Applications: A Review”, Energy Fuels Vol. 37, Issue 15, 10799–10826, 2023.
[139] . Ebenezer Dotun Adelowo ,”Lithium-ion hybrid capacitor Devices: Towards High-performance electrochemical capacitive Energy storage”, Plumx Metrics , 2020
[140] . Rasmita Barik, Pravin P Ingole, “Challenges and Prospects of metal sulfide materials for supercapacitors” , Current opinion in Electrochemistry Vol. 27, pp. 327-334, 2020
[141] . Yu Zhang, Han Hu, Zhilang Wang, Bin Luo, We Xing, Li li, Zifeng Yang, Lianzhou Wang , “Boosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancing”, Nano Energy Vol. 68, pp. 104226, 2020.
[142] . Mingfei Gao, Zhoughe Han, Ce Zhang, Peng Li, Di Wu ,”Optimal configuration for regional integrated Energy systems with Multi-element hybrid energy storage”, Energy, Vol. 277, pp. 127672, 2023.
[143] . Asad U R, Amir M A, Muhammad W I, Muhammad A, Saikh M W, Essan A A, Sohail M, Eun H C. “Highly Efficient and stable Layered AgZnS@WS2 Nano composite electrode as superior charge transfer and active redox sites for energy harvesting devices “ ,Journal of Energy Storage , Vol. 71, pp. 108022, 2023.
[144] . Martin Winter, Ralph J Brodd, “what are batteries, Fuel cells, and Supercapacitors?” , Chemical reviews, Vol. 104, Issue10, pp. 4245-4270, 2004
[145] .. Linpo Li, Wenyi Liu, Haoyang Dong, “Qiuyue Gui, Zuoqi Hu, Yuanguan Li, Jinping Liu, “Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices”, Advanced Materials Vol. 33, Issue 13, pp. 2004959, 2023.
[146] . Sucheng Liu, He Zhu, Binghao Zhang, Gen Li, Hekang Zhu, Yang Ren, Hongbo Geng, Yang Yang, Qi Liu, Cheng Chao Li , “Turning the kinetics of Zinc-ion insertion Extraction in V2O5 by insitu polyaniline intercalation Enables improved Aqueous Zinc-ion storage Performance” , Advance Materials Vol. 32, Issue 26, pp. 2001113, 2020.
[147] . Theodoor A Hendriks, Martin A Lange, Ellen M Kiens, Christopher Baeumer, Wolfgang G Zeier, “Balancing partial ionic and electronic transport for optimized cathode utilization of High-voltage LiMn2O4 / LiInCl6 solid state batteries” ,Batteries and supercapacitors Vol. 6, Issue 4, pp. e202200544, 2023.
[148] . Tapan Dey, Asia Dial, Peter R Corridou, Sai Kat Dutt, “Biosupercapacitors with minimized self-Discharge, “Chemical Engineering Journal, pp. 144101, 2023.
[149] . Peng Cai, Konli Wang, Jing Ning, Xin He, Manlin Chen, Qixing Li, Haomiao Li, Min Zhou, Wei Wang, Kaijiang, “Advanced insitu induced Dual-mechanism Heterointerface Towards ultrstable Aqueous Rocking-chair Zinc-ion Batteries”, Advanced Energy materials Vol. 12, Issue 41, pp. 2202182, 2022.
[150] . Ranjit S Kate, Suraj A Khalate, Ramech J Deokate, “ Overview of nanostructured Metal Oxides and pure nickel oxide (NiO) electrodes for supercapacitors; A review”, Journal of Alloys and compounds Vol. 734, pp. 89-111, 2018.
[151] . Chong Yan, Rui Xu, Ye Xiao, Jun-Fan Ding, Lei Xu, Bo-Quan Li, Jia- Qi Huang, “Toward Critical electrode/electrolyte interface in rechargeable batteries”, Advanced Functional materials, Vol. 30, Issue 23, pp. 1909887, 2020.
[152] . Mingle Wu, Gaixia Zhang, Lei Du, Dachi Yang, Huaming Yang, Shuliui Sun, “Defect Electro-catalysts and Alkaline Electrolyte Membranes in solid-state Zinc-Air Batteries: Recent Advances, Challenges, and Future Perspectives”, Small Methods Vol. 5, Issue 1, pp. 2000 868, 2021.
[153] . Ningshengjie Gao, Sangwook Kim, Parameswara Chinnam, Eric J Dufe K, Andrew M Colclasure, Ira Bloom, Alison Dunlop, Stephen Trask, Kelvin Gering, “Methodologies for design, characterization and testing of electrolytes that enable extreme fast charging of lithium-ion cells”, Energy storage materials, Vol. 44, pp. 296-312, 2022.
[154] . Bhupender Pal, Shengyuan Yang, Subramaniam Ramesh, Venkataraman Thangadurai, Rajan Jose, “Electrolyte selection for supercapacitive devices:A critical review”, Nanoscale Advances. pp. 13807, 2019.
[155] . Arpit Mendhe, H. S. Panda (2023), A review on electrolytes for supercapacitor device, Discover Materials,Vol. 3, pp. 29, 2023.
[156] . D. Jimenez-Cordero, F. Heras, M. A. Gilarranz and E. Raymundo-Pinero, Carbon, Vol. 71, pp. 127-138, 2014.
[157] . B. S. Mao, Z. H. Wen, Z. Bo, J. B. Chang, X. K. Huang and J. H. Chen, ACSAppl. Mater. Inter, Vol. 6, pp. 9881-9889, 2014.
[158] . N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, J. Y. Choi and J. S. Park, Adv. Mater, Vol. 25, pp. 6854-6858, 2014
[159] . M. Gali?ski, A. Lewandowski and I. St?pniak, Electrochim. Acta,Vol. 51, pp. 5567-5580, 2006.
[160] . A. Balducci, F. Soavi and M. Mastragostino, Applied Physics A: Materials Science and Processing, Vol. 82, pp. 627-632, 2006.
[161] . Yumak T, Bragg D, Sobolsky E M. “Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide activated carbon composites for supercapacitor application”, Applied surface science, Vol. 469, pp. 983-993, 2019.
[162] . Omar N, Abdullah E C, Numan A, Mubarak N M, Khalid M, Aid S R, Agudosi E S, “Facile synthesis of a binary composite from water melon ring using response surface methodology for supercapacitor electrode materials”, Journal of Energy Storage,Vol. 49, pp. 104147, 2022.
[163] . Fenghua Guo, Nivedita Gupta and Xiaowei Teng, “Enhancing Pseudocapacitive Process for Energy Storage Devices, Analyzing the Charge Transport Using Electro-kinetic Study and Numerical Modeling, pp. 73680, 2018
[164] . Corti, F.; Gulino, M.-S, Laschi, M.; Lozito, G.M.; Pugi, L, Reatti, A.; Vangi, D. “Time-Domain Circuit Modelling for Hybrid Supercapacitors”, Energies, Vol. 14, pp. 6837, 2021.Citation
S.E. Umoru, "Capacity Imbalance and Diffusion Kinetic Between the Electrodes of Hybrid Supercapacitor: A Review," International Journal of Scientific Research in Physics and Applied Sciences, Vol.12, Issue.1, pp.7-23, 2024
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.