References
[1] B. Mbuvi, M. Mwimali, M. Githiri, “Estimation of General and Specific Combining Ability of Maize Inbred Lines Using Single Cross Testers for Earliness”, W J Agric Res, Vol.6, No.2, pp.37–48, 2019.
[2] R. U. Aziz, S. Gaherwal, “Egg parasitism caused by Trichogramma spp. Against maize stem borer, Chilo partellus”, Intl J Scientific Res in Biol Science, Vol.4, No.5, pp.14–17, 2017.
[3] D. Chepkesis, H. Parzies, C. Schroeder, T. Onyango K’Oloo, R. Nar Bahadur, N. Jick, D. Gemenet, “Potentials of Hybrid Maize Varieties for Small-Holder Farmers in Kenya: A Review Based on Swot Analysis”, Afric J Fd, Agric, Nutr and Dvpt, Vol.13, No.2, pp.7562–7568, 2013.
[4] D. Djurovic, M. Madic, N. Bokan, V. Stevovic, D. Tomic, S. Tanaskovic, “Stability Parameters for Grain Yield and its Component Traits in Maize Hybrids of Different FAO Maturity Groups”, J Cntrl Eurpn Agric, Vol.15, No.4, pp.199–212, 2014.
[5] Y. Beyene, S. Mugo, T. Tefera, J. Gethi, J. Gakunga, S. Ajanga, H. Karaya, R. Musila, W. Muasya, R. Tende, S. Njoka, “Yield stability of stem borer resistant maize hybrids evaluated in regional trials in east Africa”, Afric J Plt Sci, Vol.6, No.2, pp.77–83, 2012.
[6] F. Nzuve, S. Githiri, D. M. Mukunya, J. Gethi, “Analysis of Genotype x Environment Interaction for Grain Yield in Maize Hybrids”, J Agric Sci, Vol.5, No.11, pp.75-85, 2013.
[7] M. Kwabena Osei, B. Annor, J. Adjebeng- Danquah, A. Danquah, E. Danquah, E. Blay, H. Adu-Dapaah, “Genotype × Environment Interaction: A Prerequisite for Tomato Variety Development”, In S. Tatu Nyaku & A. Danquah (Eds.), Recent Advances in Tomato Breeding and Production, IntechOpen, London UK, pp.72-91, 2019.
[8] E. Tena, F. Goshu, H. Mohamad, M. Tesfa, D. Tesfaye, A. Seife, “Genotype × environment interaction by AMMI and GGE-biplot analysis for sugar yield in three crop cycles of sugarcane (Saccharum officinirum L.) clones in Ethiopia”, Cogent Fd and Agric, Vol.5, No.1, 2019.
[9] J. Adjebeng-Danquah, J. Manu-Aduening, V. E. Gracen, I. K. Asante, S. K. Offei, “AMMI Stability Analysis and Estimation of Genetic Parameters for Growth and Yield Components in Cassava in the Forest and Guinea Savannah Ecologies of Ghana”, Intrnl J Agrmy, PP.1-10, 2017.
[10] B. Mitrovic, D. Stanisavljevic, S. Treskic, M. Stojaković, M. Ivanovic, G. Bekavac, M. Rajković, “Evaluation of Experimental Maize Hybrids Tested in Multi-Location Trials Using AMMI and GGE Biplot Analyses”, Turk J Fld Crps, Vol.17, No.1, pp.35–40, 2012.
[11] G. V. Miranda, L. V. de Souza, L. J. M. Guimarães, H. Namorato, L. R. Oliveira, M. O. Soares, “Multivariate analyses of genotype x environment interaction of popcorn”, Pesquisa Agropecuária Brasileira, Vol.44, No.1, pp.45–50, 2009.
[12] S. A. Eberhart, W. A. Russell, “Stability Parameters for Comparing Varieties”. Crp Sci, Vol.6, No.1, pp.36–40, 1966.
[13] A. Morsy, W. Fares, S. Ragheb, M. Ibrahim, “Stability Analysis of some Soybean Genotypes using a Simplified Statistical Model”, J Plnt Prod, Vol.6, No.12, pp.1975–1990, 2015.
[14] D. Bassa, F. Gurmu, H. Mohammed, “Comparison of Univariate and Multivariate Models to Analyze Stability of Common Bean (Phaseolus vulgaris L.) Genotypes in Ethiopia”, Agrotechnology, Vol.8, No.2, pp.1-7, 2019.
[15] M. Matin, A. Aminul Islam, M. Khaleque Mian, J. Ahmed, M. Amiruzzaman, “Stability analysis for yield and yield contributing characters in hybrid maize (Zea mays L.)”, Afric J Agric Res, Vol.12, No.37, pp.2795–2806, 2017.
[16] T. R. A. de Oliveira, H. W. L. de Carvalho, G. H. F. Oliveira, E. F. N. Costa, G. de A. Gravina, R. D. dos Santos, J. L. S. de. Carvalho Filho, “Hybrid maize selection through GGE biplot analysis”, Bragantia, Vol.78, No.2, pp.166–174, 2019.
[17] C. Singh, A. Gupta, V. Gupta, P. Kumar, R. Sendhil, B. Tyagi, G. Singh, R. Chatrath, G. Singh, “Genotype x environment interaction analysis of multi-environment wheat trials in India using AMMI and GGE biplot models”, Crp Brdng and Appl Biotech, Vol.19, No.3, pp.309–318, 2019.
[18] T. Tefera, S. Mugo, Y. Beyene, H. Karaya, J. Gakunga, G. Demissie, “Postharvest Insect Pest and Foliar Disease Resistance and Agronomic Performance of New Maize Hybrids in East Africa”, Intrnl J Plnt Brdng and Gntics, Vol.7, No.2, pp.92–104, 2013.
[19] C. Magorokosho, B. Vivek, J. MacRobert, “Characterization of Maize Germplasm Grown in Eastern and Southern Africa. Results of the 2008 Regional Trials Coordinated by CIMMYT”, Harare, Zimbabwe, pp.1-64 2009.
[20] SAS, “SAS ® 9.4 for Windows”, SAS Institute Inc, Cary, N.C, USA, 2013.
[21] A. Bisawas, U. Sarker, B. Banik, M. Rohman, M. Talukder, “Genotype x environment interaction for grain yield of maize (Zea mays L.) inbreds under salinity stress”, Bngldsh J Agric Res, Vol.39, No.2, pp.293–301, 2014.
[22] J. B. Duarte, M. J. Zimmermann, “Selection of locations for common bean (Phaseolus vulgaris L.) germoplasm evaluation”, Revista Brasileira de Genética, Vol.14, No.3, pp.765–770, 1991.
[23] H. Mafouasson, V. Gracen, M. Yeboah, G. Ntsomboh-Ntsefong, L. Tandzi, C. Mutengwa, “Genotype-by-Environment Interaction and Yield Stability of Maize Single Cross Hybrids Developed from Tropical Inbred Lines”, J Agrnmy, Vol.8, No.62, pp.1-17, 2018.
[24] S. Ngailo, H. Shimelis, J. Sibiya, K. Mtunda, J. Mashilo, “Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease”, Heliyon, Vol.5, No.3, pp.1-23, 2019.
[25] E. K. Mageto, D. Makumbi, K. Njoroge, R. Nyankanga, “Genetic analysis of early-maturing maize (Zea mays L.) Inbred lines under stress and non-stress conditions”, J Crp Imprvmnt, Vol.31, No.4, pp.560–588, 2017.
[26] W. Anley, H. Zeleke, Y. Dessalegn, “Genotype X environment interaction of maize (Zea mays L.) across North Western Ethiopia”, J Plnt Brdng and Crp Sci, Vol.5, No.9, pp.171–181, 2013.
[27] J. Crossa, “From Genotype × Environment Interaction to Gene × Environment Interaction”, Currnt Gnmcs, Vol.13, No.3, pp.225–244, 2012.
[28] L. C. I. da Silveira, V. Kist, T. O. M. de Paula, M. H. P. Barbosa, L. A. Peternelli, E. Daros, “AMMI analysis to evaluate the adaptability and phenotypic stability of sugarcane genotypes”, Scientia Agricola, Vol.70, No.1, pp.27–32, 2013.
[29] F. E. Below, J. R. Seebauer, “Management and environmental factor contributions to maize yield”, MDPI Books, pp.1-189, 2019.
[30] T. Welu Gebremedhin, “Adaptation of food barley (Hordeum vulgare L.) genotypes”, J Agric Sci, Vol.60, No.2, pp.227–235, 2015.
[31] P. C. Rodrigues, D. G. S. Pereira, J. T. Mexia, “A comparison between Joint Regression Analysis and the Additive Main and Multiplicative Interaction model: The robustness with increasing amounts of missing data”, Scientia Agricola, Vol.68, No.6, pp.679–686, 2011.
[32] D. Bustos-Korts, I. Romagosa, G. Borràs-Gelonch, A. M. Casas, G. A. Slafer, F. van Eeuwijk, “Genotype by Environment Interaction and Adaptation”, In R. A. Meyers (Ed.), Encyclopedia of Sustainability Science and Technology, Springer New York, New York, pp.1–44, 2018.
[33] W. Yan, M. S. Kang, B. Ma, S. Woods, P. L. Cornelius, “GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data”, Crp Sci, Vol.47, No.2, pp.643–653, 2007.
[34] G. A. Owusu, D. Nyadanu, P. Owusu-Mensah, R. Adu Amoah, S. Amissah, F. C. Danso, “Determining the effect of genotype × environment interactions on grain yield and stability of hybrid maize cultivars under multiple environments in Ghana”, Ecol Gntcs and Gnmcs, Vol.9, pp.7–15, 2018.