References
[1] T. Ho, “Skin lightening method,” Cosm Toil (Ed Port), 2005. [Online]. Available: http://www.sironabiochem.com/products/skinlightening/. [Accessed: 18-Nov-2018].
[2] “Skin Lightening Products Market to Reach USD23.0 Bn by 2020: Global Industry Analysts,” 2018.
[3] M. E. Chiari, M. B. Joray, G. Ruiz, S. M. Palacios, and M. C. Carpinella, “Tyrosinase inhibitory activity of native plants from central Argentina: Isolation of an active principle from Lithrea molleoides,” Food Chem., vol. 120, no. 1, pp. 10–14, 2010.
[4] A. Adhikari et al., “Screening of Nepalese crude drugs traditionally used to treat hyperpigmentation: In vitro tyrosinase inhibition,” Int. J. Cosmet. Sci., vol. 30, no. 5, pp. 353–360, 2008.
[5] T. B. Fitzpatrick, K. A. Arndt, A. M. el-Mofty, and M. A. Pathak, “Hydroquinone and psoralens in the therapy of hypermelanosis and vitiligo.,” Arch. Dermatol., vol. 93, no. 5, pp. 589–600, 1966.
[6] K. A. Arndt, “Topical use of hydroquinone as a depigmenting agent,” JAMA J. Am. Med. Assoc., vol. 194, no. 9, pp. 965–967, 1965.
[7] A. M. Kligman and I. Willis, “A new formula for depigmenting human skin.,” Arch. Dermatol., vol. 111, no. 1, pp. 40–8, 1975.
[8] G. P. Heilgemeir and B. R. Balda, “[Irreversible toxic depigmentation. Observations following use of hydroquinonemonobenzylether-containing skin bleaching preparations].,” MMW. Munch. Med. Wochenschr., vol. 123, no. 2, pp. 47–8, 1981.
[9] A. Garcia and J. E. Fulton, “The combination of glycolic acid and hydroquinone or kojic acid for the treatment of melasma and related conditions,” Dermatologic Surg., vol. 22, no. 5, pp. 443–447, 1996.
[10] K. J. S. Kumar et al., “In vitro and in vivo studies disclosed the depigmenting effects of gallic acid: A novel skin lightening agent for hyperpigmentary skin diseases,” BioFactors, vol. 39, no. 3, pp. 259–270, 2013.
[11] M. L. Gonçalez, M. A. Corrêa, and M. Chorilli, “Skin Delivery of Kojic Acid-Loaded Nanotechnology-Based Drug Delivery Systems for the Treatment of Skin Aging,” Biomed Res. Int., vol. 2013, pp. 1–9, 2013.
[12] D.-H. Ki et al., “Preformulation and formulation of newly synthesized QNT3-18 for development of a skin whitening agent,” Drug Dev. Ind. Pharm., vol. 39, no. 4, pp. 526–533, 2013.
[13] A. C. Breathnach, M. Nazzaro-Porro, S. Passi, and G. Zina, “Azelaic acid therapy in disorders of pigmentation.,” Clin. Dermatol., vol. 7, no. 2, pp. 106–19.
[14] V. M. Verallo-Rowell, V. Verallo, K. Graupe, L. Lopez-Villafuerte, and M. Garcia-Lopez, “Double-blind comparison of azelaic acid and hydroquinone in the treatment of melasma.,” Acta Derm. Venereol. Suppl. (Stockh)., vol. 143, pp. 58–61, 1989.
[15] S. C. Shivhare, K. G. Malviya, K. K. Shivhare Malviya, and V. Jain, “A Review: Natural skin lighting and nourishing agents.”
[16] C.-H. Huang, H.-C. Sung, C.-Y. Hsiao, S. Hu, and Y.-S. Ko, “Transdermal delivery of three vitamin C derivatives by Er:YAG and carbon dioxide laser pretreatment,” Lasers Med. Sci., vol. 28, no. 3, pp. 807–814, 2013.
[17] C.-L. Yao, Y.-M. Lin, M. S. Mohamed, and J.-H. Chen, “Inhibitory effect of ectoine on melanogenesis in B16-F0 and A2058 melanoma cell lines,” Biochem. Eng. J., vol. 78, pp. 163–169, 2013.
[18] Y.-K. Won, C.-J. Loy, M. Randhawa, and M. D. Southall, “Clinical efficacy and safety of 4-hexyl-1,3-phenylenediol for improving skin hyperpigmentation,” Arch. Dermatol. Res., vol. 306, no. 5, pp. 455–465, 2014.
[19] K. H. Son and M. Y. Heo, “The evaluation of depigmenting efficacy in the skin for the development of new whitening agents in Korea,” Int. J. Cosmet. Sci., vol. 35, no. 1, pp. 9–18, 2013.
[20] Y.-S. Chen, S.-M. Lee, C.-C. Lin, C.-Y. Liu, M.-C. Wu, and W.-L. Shi, “Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L.,” J. Biosci. Bioeng., vol. 115, no. 3, pp. 242–245, 2013.
[21] P.-W. Hsieh, W.-Y. Chen, I. A. Aljuffali, C.-C. Chen, and J.-Y. Fang, “Co-drug strategy for promoting skin targeting and minimizing the transdermal diffusion of hydroquinone and tranexamic acid.,” Curr. Med. Chem., vol. 20, no. 32, pp. 4080–92, 2013.
[22] T. W. Tse and E. Hui, “Tranexamic acid: an important adjuvant in the treatment of melasma,” J. Cosmet. Dermatol., vol. 12, no. 1, pp. 57–66, 2013.
[23] S. Eimpunth, R. Wanitphadeedecha, and W. Manuskiatti, “A focused review on acne-induced and aesthetic procedure-related postinflammatory hyperpigmentation in Asians,” J. Eur. Acad. Dermatology Venereol., vol. 27, pp. 7–18, 2013.
[24] A. M. Girelli, E. Mattei, A. Messina, and A. M. Tarola, “Inhibition of Polyphenol Oxidases Activity by Various Dipeptides,” J. Agric. Food Chem., vol. 52, no. 10, pp. 2741–2745, 2004.
[25] H. Morita, T. Kayashita, H. Kobata, A. Gonda, K. Takeya, and H. Itokawa, “Pseudostellarins D - F, new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla,” Tetrahedron, vol. 50, no. 33, pp. 9975–9982, 1994.
[26] A. Abu Ubeid, L. Zhao, Y. Wang, and B. M. Hantash, “Short-sequence oligopeptides with inhibitory activity against mushroom and human tyrosinase,” J. Invest. Dermatol., vol. 129, no. 9, pp. 2242–2249, 2009.
[27] H. Kim, J. Choi, J. K. Cho, S. Y. Kim, and Y.-S. Lee, “Solid-phase synthesis of kojic acid-tripeptides and their tyrosinase inhibitory activity, storage stability, and toxicity,” Bioorg. Med. Chem. Lett., vol. 14, no. 11, pp. 2843–2846, 2004.
[28] B. Reddy, T. Jow, and B. M. Hantash, “Bioactive oligopeptides in dermatology: Part I,” Exp. Dermatol., vol. 21, no. 8, pp. 563–568, 2012.
[29] N. W. Hsiao et al., “Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors,” J. Chem. Inf. Model., vol. 54, no. 11, pp. 3099–3111, 2014.
[30] M. Schurink, W. J. H. van Berkel, H. J. Wichers, and C. G. Boeriu, “Novel peptides with tyrosinase inhibitory activity,” Peptides, vol. 28, no. 3, pp. 485–495, 2007.
[31] T.-S. Tseng et al., “Discovery of Potent Cysteine-Containing Dipeptide Inhibitors against Tyrosinase: A Comprehensive Investigation of 20 × 20 Dipeptides in Inhibiting Dopachrome Formation,” J. Agric. Food Chem., vol. 63, no. 27, pp. 6181–6188, 2015.
[32] R. G. Buckholz and M. A. Gleeson, “Yeast systems for the commercial production of heterologous proteins.,” Biotechnology. (N. Y)., vol. 9, no. 11, pp. 1067–72, 1991.
[33] J. M. Cregg, T. S. Vedvick, and W. C. Raschke, “Recent advances in the expression of foreign genes in Pichia pastoris.,” Biotechnology. (N. Y)., vol. 11, no. 8, pp. 905–10, 1993.
[34] K. N. Faber, W. Harder, G. Ab, and M. Veenhuis, “Methylotrophic yeasts as factories for the production of foreign proteins,” Yeast, vol. 11, no. 14, pp. 1331–1344, 1995.
[35] M. Romanos, “Advances in the use of Pichia pastoris for high-level gene expression,” Curr. Opin. Biotechnol., vol. 6, no. 5, pp. 527–533, 1995.
[36] M. A. Romanos, C. A. Scorer, and J. J. Clare, “Foreign Gene Expression in Yeast: a Review,” 1992.
[37] J. F. Tschopp, P. F. Brust, J. M. Cregg, C. A. Stillman, and T. R. Gingeras, “Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris.,” Nucleic Acids Res., vol. 15, no. 9, pp. 3859–76, 1987.
[38] S. R. Hamilton et al., “Production of complex human glycoproteins in yeast.,” Science, vol. 301, no. 5637, pp. 1244–6, 2003.
[39] F. Hu et al., “A visual method for direct selection of high-producing Pichia pastoris clones,” BMC Biotechnol., vol. 11, no. 1, p. 23, 2011.
[40] S. Wiese et al., “Proteomics Characterization of Mouse Kidney Peroxisomes by Tandem Mass Spectrometry and Protein Correlation Profiling,” Mol. Cell. Proteomics, vol. 6, no. 12, pp. 2045–2057, 2007.
[41] U. J. Rani, S. B. Prasad, and C. Pasha, “SCREENING ANTI-OXIDANT AND ANTI-TYROSINASE POTENTIAL OF PLANTS AND EARTHWORM EXTRACTS,” Online) IJPBS TM |, vol. 8, pp. 495–501, 2018.
[42] S. P. Bitragunta, “Toxicity Evaluation of TiO2 Nanoparticles in Earthworm (Eisenia fetida),” Thesis Birla Institute of Technology and Science Pilani, Hyderabad Campus, 2017.
[43] M. Blaszczyk, M. P. Ciemny, A. Kolinski, M. Kurcinski, and S. Kmiecik, “Protein–peptide docking using CABS-dock and contact information,” Brief. Bioinform., 2018.
[44] J. Bai et al., “A Gene Optimization Strategy that Enhances Production of Fully Functional P-Glycoprotein in Pichia pastoris,” PLoS One, vol. 6, no. 8, p. e22577, 2011.
[45] S. Eissazadeh, H. Moeini, M. G. Dezfouli, S. Heidary, R. Nelofer, and P. Abdullah, “Biotechnology and Industrial Microbiology Production of recombinant human epidermal growth factor in Pichia pastoris,” 2017.
[46] M. E. Bushell, M. Rowe, C. A. Avignone-Rossa, and J. N. Wardell, “Cyclic fed-batch culture for production of human serum albumin in Pichia pastoris,” Biotechnol. Bioeng., vol. 82, no. 6, pp. 678–683, 2003.
[47] F. He, “Laemmli-SDS-PAGE,” BIO-PROTOCOL, vol. 1, no. 11, 2011.