References
[1] Shang, A., Cao, S. Y., Xu, X. Y., Gan, R. Y., Tang, G. Y., Corke, H., ... & Li, H. B.. “Bioactive compounds and biological functions of garlic (Allium sativum L.)”, Foods, Vol.8, Issue.7, pp.246, 2019. doi: 10.3390/foods8070246.
[2] Zhang, Y., Liu, X., Ruan, J., Zhuang, X., Zhang, X., & Li, Z. “Phytochemicals of garlic: Promising candidates for cancer therapy”, Biomedicine & Pharmacotherapy, Vol.123, pp,109730, 2020. https://doi.org/10.1016/j.biopha.2019.109730.
[3] Zhou, Y., Zhuang, W., Hu, W., Liu, G. J., Wu, T. X., & Wu, X. T. “Consumption of large amounts of Allium vegetables reduces risk for gastric cancer in a meta-analysis”, Gastroenterology, Vol.141, Issue.1, pp.80-89, 2011. https://doi.org/10.1053/j.gastro.2011.03.057.
[4] Kodali, R. T., & Eslick, G. D. “Meta-analysis: Does garlic intake reduce risk of gastric cancer?”, Nutrition and cancer, Vol. 67, Issue.1, pp.1-11, 2015. https://doi.org/10.1080/01635581.2015.967873.
[5] Turati, F., Guercio, V., Pelucchi, C., Vecchia, C. L., & Galeone, C.” Colorectal cancer and adenomatous polyps in relation to allium vegetables intake: A meta?analysis of observational studies”, Molecular nutrition & food research, Vol.58, Issue.9, pp.1907-1914, 2014. https://doi.org/10.1002/mnfr.201400169.
[6] Lipinski, Christopher A. "Lead-and drug-like compounds: the rule-of-five revolution," Drug Discovery Today: Technologies Vol.1. Issue.4, pp.337-341, 2004. https://doi.org/10.1016/j.ddtec.2004.11.007.
[7] Daina, A., Michielin, O., & Zoete, V.” SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules”, Scientific reports, Vol. 7, Issue.1, pp.1-13, 2017. https://doi.org/10.1038/srep42717.
[8] Alexey Lagunin, Alla Stepanchikova, Dmitrii Filimonov, Vladimir Poroikov. “PASS: prediction of activity spectra for biologically active substances”, Bioinformatics, Vol. 16, Issue. 8, pp. 747–748, 2000. https://doi.org/10.1093/bioinformatics/16.8.747
[9] Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. “PASS: prediction of activity spectra for biologically active substances”, Bioinformatics, Vol. 16, Issue.8, pp.747-748, 2000. https://doi.org/10.1093/bioinformatics/16.8.747.
[10] Shirin, H., Pinto, J. T., Kawabata, Y., Soh, J. W., Delohery, T., Moss, S. F., Murty, V., Rivlin, R. S., Holt, P. R., & Weinstein, I. B.” Antiproliferative effects of S-allylmercaptocysteine on colon cancer cells when tested alone or in combination with sulindac sulfide”, Cancer research, Vol. 16. 61, Issue.2, pp.725–731, 2001.
[11]Lokman Uzun, Numan Kokten, Osman Halit Cam, M.Tayyar Kalcioglu, M. Birol Ugur, Muhammet Tekin, Gul Ozbilen Acar. “The effect of Garlic Derivatives (S-Allylmercaptocysteine, Diallyl Disulfide, and S-Allylcysteine) on Gentamicin Induced Ototoxicity: An Experimental Study”, Clinical and Experimental Otorhinolaryngology, Vol. 9, Issue.4, pp.309-313, 2016. https://doi.org/10.21053/ceo.2015.01032.
[12]Lv, Y., So, K. F., Wong, N. K., & Xiao, J. “Anti-cancer activities of S-allylmercaptocysteine from aged garlic”, Chinese journal of natural medicines, Vol. 17, Issue.1, pp.43–49, 2019 https://doi.org/10.1016/S1875-5364(19)30008-1.
[13]Shirin, H., Pinto, J. T., Kawabata, Y., Soh, J. W., Delohery, T., Moss, S. F., & Weinstein, I. B.” Antiproliferative effects of S-allylmercaptocysteine on colon cancer cells when tested alone or in combination with sulindac sulfide”, Cancer research, Vol. 61, Issue.2, pp. 725-731, 2001.
[14]Dandan Tong, Hui Qu Xiangning Meng Yang Jiang Duanyang Liu Shengqian Ye He Chen Yan Jin Songbin Fu Jingshu Geng. “S-allylmercaptocysteine promotes MAPK inhibitor-induced apoptosis by activating the TGF-? signaling pathway in cancer cells,” Oncology reports, Vol. 32 , Issue.3, pp. 1124-1132, 2014. https://doi.org/10.3892/or.2014.3295.
[15]Yan, J. Y., Tian, F. M., Hu, W. N., Zhang, J. H., Cai, H. F., & Li, N.” Apoptosis of human gastric cancer cells line SGC 7901 induced by garlic-derived compound S-allylmercaptocysteine (SAMC)”, European review for medical and pharmacological sciences, Vol. 17, Issue 6, pp.745–751, 2013.
[16]Zhu, X., Jiang, X., Duan, C., Li, A., Sun, Y., Qi, Q., & Zhao, Z.” S-Allylmercaptocysteine induces G2/M phase arrest and apoptosis via ROS-mediated p38 and JNK signaling pathway in human colon cancer cells in vitro and in vivo”, RSC advances, Vol. 7, Issue.77, pp.49151-49158, 2017.
[17]Liu, Y., Yan, J., Han, X., & Hu, W. “Garlic-derived compound S-allylmercaptocysteine (SAMC) is active against anaplastic thyroid cancer cell line 8305C (HPACC), Technology and health care : official journal of the European Society for Engineering and Medicine, Vol. 23, Issue.1, pp.S89–S93, 2015. https://doi.org/10.3233/thc-150936 .
[18]Pinto, J. T., & Rivlin, R. S. “Antiproliferative effects of allium derivatives from garlic”, The Journal of nutrition, Vol. 131, Issue.3s, 1058S–60S, 2001 . https://doi.org/10.1093/jn/131.3.1058S.
[19]Pinto, J. T., Qiao, C. H., Xing, J., Brian, P., Suffoletto, B. P., Schubert, K. B., Rivlin, R. S., Huryk, R. F., Bacich, D. J. & Heston, W. D. W. ” Alterations of prostate biomarker expression and testosterone utilization in human LNCaP prostatic carcinoma cells by garlic-derived S-allylmercaptocysteine”, The Prostate, Vol.45, Issue.4,pp.304–314, 2000. https://doi.org/10.1002/1097-0045(20001201)45:4<304::aid-pros4>3.0.co;2-9.
[20] Xiao D, Pinto JT, Soh JW, Deguchi A, Gundersen GG, Palazzo AF, Yoon JT, Shirin H, Weinstein IB”,Induction of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) is associated with microtubule depolymerization and c-Jun NH(2)-terminal kinase 1 activation”, Cancer research, Vol. 63, Issue.20, pp.6825-37, 2003.
[21]Kemmish, H., Fasnacht, M., & Yan, L. “Fully automated antibody structure prediction using BIOVIA tools: Validation study”, PloS one, Vol. 12, Issue.5, pp.e0177923, 2017. https://doi.org/10.1371/journal.pone.0177923.
[22]Filimonov, Dmitry, and Vladimir Poroikov.” Probabilistic approaches in activity prediction, Royal Society of Chemistry, Cambridge, UK, pp. 182-216, 2008.
[23] Daina, A., Michielin, O., & Zoete, V. “SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules”, Scientific reports, Vol. 7, pp.42717, 2017. https://doi.org/10.1038/srep42717.
[24]Lee, S. K., Chang, G. S., Lee, I. H., Chung, J. E., Sung, K. Y., & No, K. T. “The PreADME: pc-based program for batch prediction of adme properties”, EuroQSAR, Vol.9, pp.5-10, 2004.
[25]S Lee, S. K., Lee, I. H., Kim, H. J., Chang, G. S., Chung, J. E., & No, K. T. “The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties”, EuroQSAR 2002 Designing Drugs and Crop Protectants: processes, problems and solutions, pp.418-420, 2003.
[26]Pires, D. E., Blundell, T. L., & Ascher, D. B. “pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures”, Journal of medicinal chemistry, Vol. 58, Issue.9, pp.4066–4072, 2015. https://doi.org/10.1021/acs.jmedchem.5b00104.
[27]Phillips, I. R., & Shephard, E. A. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease. Xenobiotica; the fate of foreign compounds in biological systems, Vol. 50, Issue 1, pp.19–33, 2020. https://doi.org/10.1080/00498254.2019.1643515.
[28]Valentino, H., Campbell, A. C., Schuermann, J. P., Sultana, N., Nam, H. G., LeBlanc, S., Tanner, J. J., & Sobrado, P. “Structure and function of a flavin-dependent S-monooxygenase from garlic (Allium sativum)”, The Journal of biological chemistry, Vol. 295, Issue.32, pp.11042–11055, 2020. https://doi.org/10.1074/jbc.RA120.014484.
[29]Ferrari, I. V., Narducci, R., Prestopino, G., Costantino, F., Mattoccia, A., Di Giamberardino, L., ... & Medaglia, P. G.”, Layered Double Hydroxides as A Drug Delivery Vehicle for S-Allyl-Mercapto-Cysteine (SAMC),” Processes, Vol. 9, Issue.1, pp.1819, 2021.