References
[1]. Pan S F, Tian H Q, Dangal S R S, et al, “Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century ", journal of Geographical Sciences, Vol. 25, issue. 9, pp. 1027–1044, 2015.
[2]. Li, Z., Chen, Y., Wang, Y., Fang, G, "Dynamic changes in terrestrial net primary production and their effects on evapotranspiration". Journal of hydrology and Earth System Sciences... 20: 2169–2178, 2016.
[3]. Li Z S, Liu G H, Fu B J, et al, "The potential influence of seasonal climate variables on the net primary production of forests in eastern China". Journal of Environment Management, Vol. 48, issue. 6, pp. 1173–1181, 2011.
[4]. Li D L, Yang J, Li W H, et al, "Evaluating the sensitivity of soil erosion in the Yili River valley based on GIS and USLE". Chinese Journal of Ecology, 35(4): 942–951, 2016 (in Chinese).
[5]. Clark. D. A, S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, and J. Ni, Measuring net primary production in forests: Concepts and _field methods,`` Ecol. Appl., vol. 11, no. 2, pp. 356_370, 2001.
[6]. Sun J, Yue Y, Niu H (2021) Evaluation of NPP using three models compared with MODIS NPP data over China. PLoS ONE 16(11): e0252149. https://doi.org/10.1371/journal. pone.0252149. (2021).
[7]. Rockström, J., Steffen, W., Noone, K., Persson, A., "A safe operating space for humanity". Nature 461, 472–475, 2009.
[8]. Running, S.W., "A measurable planetary boundary for the biosphere". Science 337, 1458–1459, 2012.
[9]. Higginbottom, T.P., Symeonakis, E, “Assessing land degradation and desertification using vegetation index data: current frameworks and future directions". Remote Sens.–Basel 6, 9552–9575, 2014.
[10]. Schwalm, C.R., Williams, C.A., Schaefer, K, "Carbon consequences of global hydrologic Change". J. geophysical research. 1948–2009, 2011.
[11]. Zhao, M., Running, S.W, “Drought-induced reduction in global terrestrial net primary production from 2000 through 2009". Science 329, 940–943, 2010.
[12]. Abdi, A.M., Seaquist, J., Tenenbaum, D.E., Eklundh, L., Ardö, J, “The supply and demand of net primary production in the Sahel". Environ. Res. Lett, 9.2014.
[13]. Xiao, F.; Liu, Q.; Xu, Y. Estimation of Terrestrial Net Primary Productivity in the Yellow River Basin of China Using Light Use Efficiency Model. Sustainability 2022, 14, 7399. https://doi.org/10.3390/ su14127399.
[14]. Li D L, Yang J, Li W H, et al, Evaluating the sensitivity of soil erosion in the Yili River valley based on GIS and USLE. Chinese Journal of Ecology, 35(4): 942–951, 2016 (in Chinese)
[15]. Liu, Y., Xiao, J., Ju,W., Zhou, Y.,Wang, S.,Wu, X,Water use efficiency of China`s terrestrial ecosystems and responses to drought. Sci. Rep. 5, 13799, 2015.
[16]. Zhang, Y. G., M. S. Moran, M. A. Nearing, G. E. P. Campos, A. R. Huete, A. R. Buda, and D. D. Bosch, "Extreme Precipitation Patterns and Reductions of Terrestrial Ecosystem Production across Biomes". Journal of Geophysical Research-Bio geosciences 118 (1): 148–157, 2013.
[17]. Yuan, F., C. Z. Wang, and M. Mitchell, "Spatial Patterns of Land Surface Phenology Relative to Monthly Climate Variations: US Great Plains". GIScience and Remote Sensing 51 (1): 30–50, 2014.
[18]. Ding, M. J., Q. Chen, L. H. Li, Y. L. Zhang, Z. F. Wang, L. S. Liu, and X. M. Sun, "Temperature Dependence of Variations in the End of the Growing Season from 1982 to 2012 on the Qinghai–Tibetan Plateau". GIscience and Remote Sensing 53 (2): 147–163, 2015.
[19]. Qiu, B. W., Z. Z. Wang, Z. H. Tang, Z. Liu, F. D. Lu, C. C. Chen, and N. Chen, "A Multi- Scale Spatiotemporal Modeling Approach to Explore Vegetation Dynamics Patterns under Global Climate Change". GIScience and Remote Sensing 53 (5): 596–613, 2016.
[20]. Fay, P. A., J. M. Blair, M. D. Smith, J. B. Nippert, J. D. Carlisle, and A. K. Knapp. 2011. "Relative Effects of Precipitation Variability and Warming on Tall grass Prairie Ecosystem Function". Biogeosciences 8 (10): 3053–3068, 2011.
[21]. Fry, E. L., P. Manning, D. G. P. Allen, A. Hurst, G. Everwand, M. Rimmler, and S. A. Power, " Plant Functional Group Composition Modifies the Effects of Precipitation Change on Grass land Ecosystem Function". PLoS One 8 (2): 1–14, 2013.
[22]. M. Khalifa et al, "Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia". Science of the Total Environment. (624) 790–806, 2018.
[23]. Gurashi N.A. and Hassan E.H, Estimation of Biomass and Carbon Stocks in Abu Geili Forest, Sudan. Agric. For. J., 2(2): 59-64, 2018
[24]. Grace, J., José, J.S., Meir, P., Miranda, H.S., Montes, R.A, "Productivity and carbon fluxes of tropical savannas". J. Biogeogr. 33, 387–400, 2006.
[25]. Alam, S.A., Starr, M., Clark, B.J.F, "Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: a regional carbon sequestration study". J. Arid Environ. 89, 67–76, 2013.
[26]. W.E. Abaker, Frank Berninger, Gustavo Saiz , Victor Braojos , Mike Starr, "Contribution of Acacia Senegal to biomass and soil carbon in plantations of varying age in Sudan". Forest Ecology and Management (368) 71–80, 2016.
[27]. Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
[28]. Leith, H, "Modeling the primary productivity of the world. In: Primary Productivity of the Biosphere" (H. Leith and R. H. Whittaker, Eds.), Springer-Verlag, Berlin and New York. pp. 237-263, 1975.
[29]. Al, J. E., Paasche, IPCC Climate change 2007: "The physical science basis, Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change" (pp. 434–497). Cambridge: Cambridge University Press, 2007.
[30]. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., and Medinaelizade, M, "Global temperature change". Proceedings of the National Academy of Sciences, 103, 14288–14293, 2006.
[31]. Luo, Y., Sherry, R., Zhou, X., and Wan, S, Terrestrial carbon-cycle feedback to climate warming: Experimental evidence on plant regulation and impacts of bio fuel feedstock harvest. Annual Review of Ecology Evolution and Systematic, 38, 683–712, 2007.
[32]. Penuelas J et al, "Response of plant species richness and primary productivity in shrub lands along a north-south gradient in Europeto seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003". Glob Chang Biol 13:2563–2581, 2007.
[33]. Tatarinov F, Rotenberg E, Maseyk K, Ogee J, Klein T, Yakir D, "Resilience to seasonal heat wave episodes in a Mediterranean pine forest". New Phytol 210:485–496, 2016.
[34]. Chen, F. J., Y. J. Shen, L. I. Qian, Y. Guo, and L. M. Xu, "Spatio-Temporal Variation Analysis of Ecological Systems NPP in China in past 30 Years". Scientia Geographica Sinica 31 (11): 1409–1414, 2011.
[35]. Zhang, Y. G., M. S. Moran, M. A. Nearing, G. E. P. Campos, A. R. Huete, A. R. Buda, and D. D. Bosch, "Extreme Precipitation Patterns and Reductions of Terrestrial Ecosystem Production across Biomes". Journal of Geophysical Research-Bio geosciences 118 (1): 148–157, 2012.
[36]. Onyutha, C. Trends and variability in African long-term precipitation. Stoch Environ Res Risk Assess 32, 2721–2739 (2018). https://doi.org/10.1007/s00477-018-1587-0.
[37]. Tabari, H., Taye, M.T. & Willems, P. Statistical assessment of precipitation trends in the upper Blue Nile River basin. Stoch Environ Res Risk Assess 29, 1751–1761 (2015). https://doi.org/10.1007/s00477-015-1046-0.
[38]. Hamadalnel, M., Zhu, Z., Lu, R. et al. Spatio-temporal Investigations of Monsoon Precipitation and Its Historical and Future Trend over Sudan. Earth Syst Environ 5, 519–529 (2021). https://doi.org/10.1007/s41748-021-00236-3
[39]. Bunkei M, Ming X, Jin C, Satoshi K, Masayuki T, "Estimation of regional net primary productivity (NPP) using a process-based ecosystem model: how important is the accuracy of climate data? " Ecol. Model. 178, 371–388, 2004.
[40]. Singh, R.P., Rovshan, S., Goroshi, S.K. et al. Spatial and Temporal Variability of Net Primary Productivity (NPP) over Terrestrial Biosphere of India Using NOAA-AVHRR Based GloPEM Model. J Indian Soc Remote Sens 39, 345 (2011). https://doi.org/10.1007/s12524-011-0123-1
[41]. Gutzler, D. S, T. O. Robbins, "Climate variability and projected change in the western United States: regional downscaling and drought statistics. Climate Dynamics" 37:835-849, 2011.
[42]. Cook, B. I., T. R. Ault, and J. E. Smerdon, "Unprecedented 21st century drought risk in the American Southwest and Central Plains". Science Advances, 2015.
[43]. Huang, J. P., H. P. Yu, A. G. Dai, Y. Wei, and L. T. Kang, "Dry lands face potential threat under 2 degrees C global warming target". Nature Climate Change 7:417, 2017.
[44]. Ahlstrom, A., M. R. Raupach, G. Schurgers, B. Smith, A. et al, "The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink". Science 348:895-899, 2015.
[45]. Huang, J., H. Yu, X. Guan, G. Wang, and R. Guo, "Accelerated dry land expansion under climate change". Nature Climate Change 6:166, 2016.