References
[1]. S. Banach, “Sur les opérationsdans les ensembles abstraitsetleur application aux équations intégrales”. Fundam. Math., French, Vol. 3, pp.133–181, 1992.
[2]. H. Bouhadjera and C. Godet–Thobie, “Common fixed point theorems for pairs of sub- compatible maps”, arXiv : 0906 .3159 v2, 2009.
[3]. B. S .Choudhury, S. K. Bhandari, “Kannan-type cyclic contraction results in 2-Menger space,” Mathematica Bohemica, Vol. 141, No. 1, pp.37-58, 2016.
[4]. B. S. Choudhury, K. Das, “A new contraction principle in Menger spaces”. Acta Math. Sin., Engl. Ser. Vol.24, pp.1379–1386, 2008.
[5]. B. S. Choudhury, K. Das, “A coincidence point result in Menger spaces using a control function.” Chaos Solitons Fractals, Vol. 42, pp.3058–3063, 2009.
[6]. B. S. Choudhury, K. Das, “Fixed points of generalized Kannan type mappings in gener- alized Menger spaces’. Commun. Korean Math. Soc. Vol. 24, pp.529–537, 2009.
[7]. B. S. Choudhury, K. Das, S. K. Bhandari, “A generalized cyclic C-contraction principle in Menger spaces using a control function”. Int. J. Appl. Math. Vol.24, pp.663–673, 2011.
[8]. B. S. Choudhury, K. Das, S. K. Bhandari, “Fixed point theorem for mappings with cyclic contraction in Menger spaces.” Int. J. Pure Appl. Sci. Technol. Vol. 4, pp.1–9, 2011.
[9]. P. N. Dutta, B. S. Choudhury, “A generalized contraction principle in Menger spaces using a control function”. Anal. Theory Appl., Vol.26, 110–121, 2010.
[10]. A .Jain and B. Singh,” Common fixed point theorems in Menger space through compatible maps of type (A)”, Chh. J. Sci.Tech.,Vol. 2, pp.1-12, 2005.
[11]. S. Kumar and R. Chugh, “Common fixed point theorems using minimal commutativity and reciprocal continuity conditions in metric spaces”, Sci. Math. Japan,, Vol. 56, pp. 269-275,2002
[12]. S. Kumar and B. D. Pant, “A common fixed point theorem in probabilistic metric space using implicit relatios,” Filomat, Vol. 22(2) ,pp. 43-52, 2008
[13]. P. Malviya, V. Gupta, V.H. Badshah, “Common fixed point theorem for semi compatible pairs of reciprocal continuous maps in Menger spaces’, Annals of Pure and Applied Mathematics, Vol. 11, No. 2, pp. 139-144, 2016.
[14]. K .Menger, “Statistical metrics,” Poc. Nat. Acad. Sci., vol. 28, pp. 535-537, 1942.
[15]. S. N. Mishra, “Common fixed points of compatible mappings in PM-space,” Math. Japon., 36(2), pp. 283-289, 1991
[16]. B. D. Pant and S. Chouhan, “Common fixed point theorems for semi-compatibility maps using implicit relation”, Int. J. of Math. Analysis, 3(28), pp. 1389-1398, 2009.
[17]. K. Sarkar and K. Tiwary, “Common Fixed Point Theorems for Weakly Compatible Mappings on Cone Banach Space,” International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol: 5, Issue-2, pp. 75-79, 2018.
[18]. B. Schweizer, A. Sklar, “Probabilistic Metric Spaces.” North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing, New York, 1983.
[19]. V.M. Sehgal, “Some fixed point theorems in functions analysis and probability,” Ph.D. dissertation, Wayne State Univ. Michigan, 1966.
[20]. V. M. Sehgal and A. T. Bharucha-Reid, “Fixed points of contraction mappings on probabilistic metric spaces”, Math. Systems Theory, Vol. 6 ,pp. 97-102, 1972
[21]. Y. Shi, L. Ren, X. Wang, “The extension of fixed point theorems for set valued mapping”. J. Appl. Math. Comput., 13,pp. 277–286, 2003.
[22]. S. L. Singh, B. D. Pant and R. Talwar, “Fixed points of weakly commuting mappings on Menger spaces,” Jnanabha, 23, pp.115-122, 1993.
[23]. S. L. Singh and B. D. Pant, “Common fixed point theorems in probabilistic metric space and extension to uniform spaces,” Honam. Math. J., pp. 1-12, 1984.