References
[1]. S. M. Ulam,"Problems in Modern Mathematics", Science Editions, JohnWiley and Sons, New York, NY, USA,1964.
[2]. H. Azadi Kenary,"Non-Archimedean stability of Cauchy-Jensen type functional equation ", Int. J. nonlinear analysis appl., vol. 1, issue. 2, pp. 1-10, 2010.
[3]. J.B. Diaz ,B. Margolis,"A fixed point theorem of the alternative for contraction on a generalized complete metric space",Bull. Amer. Math. Soc.,vol. 74,pp. 305-309, 1968.
[4]. M. Eshaghi Gordji and H. Khodaei,"Stability of Functional Equations", Lap Lambert Academic Publishing, 2010.
[5]. M. Eshaghi Gordji, S. Zolfaghari, J. M. Rassias, and M. B. Savadkouhi,"Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces",Abstract and Applied Analysis, vol. 2009, Article ID 417473, 14 pages.
[6]. P. Gavruta, "A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings",J. Math. Anal. Appl., vol. 184, issue. 3, pp. 431-436, 1994.
[7]. K. Hensel, "Ubereine news Begrundung der Theorie der algebraischen Zahlen", Jahresber. Deutsch. Math., vol. 6 , pp. 83 - 88, 1897.
[8]. N. Hooda and S. Tomar,"Approximation of the cubic functional equation in random normed spaces:direct and fixed point method",Aryabhatta Journal of Mathematics and Informatics,vol. 10,issue. 1,pp. 99-114, 2018.
[9]. D. H. Hyers,"On the stability of the linear functional equation", Proc. Natl. Acad. Sci. USA, vol. 27, issue. 4, pp. 222-224 , 1941.
[10]. K.W.Jun and H.M.Kim,"The generalized Hyers-Ulam-Rassias stability problem of cubic functional equation",J. Math. Anal. Appl.,vol. 27 ,pp. 867-878, 2002.
[11]. W.A.J. Luxemburg,"On the convergence of successive approximation in the theory of ordinary differential equation",Proc. K. Ned. Aked. Wet.,Ser. A.,Indag. Math.,vol. 20,pp. 540-546, 1958.
[12]. D. Mihet, "The stability of the additive Cauchy functional equation in non-Archimedean fuzzy normed spaces", Fuzzy Sets and Systems ,vol. 161, pp. 2206-2212, 2010.
[13]. D. Mihet¸ and V. Radu,"On the stability of the additive Cauchy functional equation in random normed spaces",J. Math Anal Appl, vol. 343, issue. 1, pp. 567 - 572, 2008.
[14]. A. Najati, " The generalized Hyers-Ulam-Rassias stability of a cubic functional equation", Turk. J. Math., vol. 31, issue. 4, pp. 395-408, 2007.
[15]. J. M. Rassias,"On approximation of approximately linear mappings by linear mappings", J. Funct. Anal., vol. 46, issue. 1, pp. 126-130, 1982.
[16]. Th. M. Rassias,"On the stability of the linear mapping in Banach spaces", Proc. Amer. Math. Soc.,vol. 72 ,pp. 297 - 300, 1978.
[17]. M. A. Sibaha,B. Bouikhalene, and E. Elqorachi, "Ulam-Gavruta-Rassias stability of a linear functional equation", Int. J. Appl. Math. Stat., vol. 7, issue. Fe07, pp. 157-166, 2007.