References
[1] Catalina Stefanescu and Bruce W. Turnbull, “Multivariate frailty models for Exchangeable Survival data with covariates”, Technometrics Vol.48, Issue.3, pp.411-417, 2006.
[2] Clayton, D.G., “A model for association in bivariate life tables and its application in epi- demiological studies of familial tendency in chronic disease incidence”, Biometrika, Vol.65, pp.141 – 151, 1978.
[3] Cook, R.J., Ng, E.T.M., Mukherjee, J., Vaughan, D. “Two-state mixed renewal processes for chronic disease”, Statistics in Medicine, Vol.18, pp.175–188, 1999.
[4] De Faire, U., Friberg, L., Lundman, T. “Concordance for mortality with special reference to ischaemic heart disease and cerebrovascular disease: a study on the Swedish Twin Registry”, Preventive Medicine, Vol. 4, pp.509 – 517, 1975.
[5] Fisher R.A., “Cancer and smoking. Nature” 182, 596, 1958.
[6] Hanagal D.D., “Weibull extension of bivariate exponential regression model with different frailty distributions”, Stat Papers (2009), Vol.50, pp.29-49, 2009.
[7] Hanagal D.D.,“Modeling heterogeneity for bivariate survival data by the Weibull distribution”, Stat Papers, Vol. 51, pp.947-958, 2010.
[8] Hanagal D.D., “Modeling survival data using frailty models”, Chapman and Hall, Boca Raton Heckman JJ, 2011.
[9] Hanagal D.D. and Alok D.D., “Modeling of Inverse Gaussian Frailty Model for Bivariate Survival Data” Communication in Statistics-Theory and methods, Vol. 42, pp.3744-3769, 2013.
[10] Hougaard. P., “Fitting Multivariate Failure Time Distributions”, IEEE Transactions on Reliability, Vol.38, pp.444- 448, 1989.
[11] Hougaard, P., “Analysis of multivariate survival data”, Springer, New York, 2000.
[12] Iachine, I. “The Use of Twin and Family Survival Data in the Population Studies of Ag¬ing: Statistical Methods Based on Multivariate Survival Models” Ph.D. Thesis. Monograph 8, Department of Statistics and Demography, University of Southern Denmark, 2002.
[13] Iachine, I., Holm, N., Harris, J., Begun, A., Iachina, M., Laitinen, M., Kaprio, J., Yashin, A., “How heritable is individual susceptibility to death? The results of an analysis of survival data on Danish, Swedish and Finnish twins”, Twin Research Vol.1, pp.196 – 205, 1998.
[14] Jaisingh, L. R., Dey, D. K., and Griffith, W. S., “Properties of a Multivariate Survival Distribution Generated by a Weibull and Inverse Gaussian Mixture”, Transactions on Reliability, Vol.42, pp.618-622, 1993.
[15] Kheiri, S., Kimber, A., Meshkani M.R., “Bayesian analysis of an inverse Gaussian correlated frailty model”, Computat. Statist. Data Anal. Vol.51, pp.5317-5326, 2007.
[16] Lee, S., Lee, S.“Testing heterogeneity for frailty , distribution in shared frailty model”, Com¬munications in Statistics, Theory and Methods, Vol.32, pp.2245 – 2253, 2003.
[17] Lillard, L.A., Brian, M.J., Waite, M.J., “Premarital cohabitation and subsequent marital dissolution: a matter of self-selection”, Demography, Vol.32, pp.437 – 457, 1995.
[18] Lindeboom, M., Van Den Berg, G.J., “Heterogeneity in models for bivariate survival: the importance of the mixing distribution”, Journal of the Royal Statistical Society (B), Vol.56, pp.49 – 60, 1994.
[19] Madhuja Mallick and Nalini Ravishanker, “Additive Positive Stable Frailty Models”, Methodol Comput Appl Probab, pp.541-558, 2006.
[20] Mahe, C., Chevret, S., “Estimating regression parameters and degree of dependence for multivariate failure time data”, Biometrics, Vol. 55, pp.1078 – 1084, 1999.
[21] Marenberg, M.E., Risch, N., Berkman, L.F., Floderus, B., de Faire, U., “Genetic suscep¬tibility to death from coronary heart disease in a study of twins”, The New England Journal of Medicine, Vol.330, pp.1041 – 1046, 1994.
[22] McGilchrist, C.A., Aisbett, C.W., “Regression with frailty in survival analysis”, Biometrics, Vol.47, pp.461 – 466, 1991.
[23] McGilchrist, C.A., “REML estimation for survival models with frailty”, Biometrics, Vol.49, pp.221-225, 1993.
[24] Moger, T.A., Aalen, O.O., Heimdal, K., Gjessing, H.K., “Analysis of testicular cancer data using a frailty model with familial dependence”, Statistics in Medicine, Vol.23, pp.617 – 632, 2004b
[25] Moger, T.A., Aalen, O.O., “A distribution for multivariate frailty based on the compound Poisson distribution with random scale”, Lifetime Data Analysis, Vol.11, pp.41 – 59, 2005.
[26] Nalini Ravishanker and Dipak K. Dey, “Multivariate Survival Models with a Mixture of Positive Stable Frailties”, Methodology and Computing in Applied Probability, Vol.2, Issue.3, pp.293-308, 2000.
[27] Nayak, T. K., “Multivariate Lomox Distribution: Properties and Usefulness in Reliability Theory”, Journal of Applied Probability, Vol.24, pp.170-177, 1987.
[28] Paik, M.C., Tsai, W.-Y., Ottman, R., “Multivariate survival analysis using piecewise gamma frailty”, Biometrics, Vol.50, pp.975 – 988, 1994.
[29] Pankratz, V.S., de Andrade, M., Therneau, T. M., “Random-effects Cox proportional hazards model: general variance components methods for time-to-event data”, Genetic Epidemiology, Vol.28, pp.97 – 109, 2005.
[30] Parekh, S.G., Ghosh, D. K. and Patel, S.R., “On frailty models for kidney infection data with exponential baseline distribution”, International Journal of Applied Mathematics & Statistical Sciences (IJAMSS), Vol.4, Issue.5, pp.31-40, 2015.
[31] Parekh, S.G., Ghosh, D. K. and Patel, S.R., “Some Bayesian frailty models”, International Journal of Science and Research (IJSR), Vol.5, issue.7, pp.1949-1952, 2016.
[32] Petersen, J.H., “An additive frailty model for correlated lifetimes”, Biometrics, Vol.54, pp.646-661, 1998.
[33] P. G. Sankaran and V. L. Gleeja, “Proportional reversed hazard and frailty models”, Metrika, Vol.68, pp.333-342, 2008.
[34] Ripatti, S., Larsen, K., Palmgren, J., “Maximum likelihood inference for multivariate frailty models using an automated MCEM algorithm”, Lifetime Data Analysis, Vol.8, pp.349 – 360, 2002.
[35] Sahu, K.S., Dey, D.K., Aslanidou, H., Sinha, D., “A Weibull regression model with Gamma frailties for multivariate survival data”, Lifetime Data Analysis, Vol. 3, pp.123 – 137, 1997.
[36] Sahu S. K and Dey D. K. “A Comparison of Frailty and Other Models for Bivariate Survival Data”, Lifetime Data Anal, Vol.6, pp.207-228, 2000.
[37] Santos dos, C. A. and Achcar, J. A., “A Bayesian analysis for multivariate survival data in the presence of covariates”, Journal of Statistical Theory and Applications, Vol.9, pp.233-253, 2010.
[38] Sastry, N., “A nested frailty model for survival data, with an application to the study of child survival in northeast Brazil”, Journal of the American Statistical Association, Vol.92, pp.426 – 435, 1997.
[39] Whitmore, G. A., and Lee, M. T., “A Multivariate Survival Distributions Generated by an Inverse Gaussian Mixture of Exponential”, Technometrics, Vol.33, pp.39- 50, 1991.
[40] Wienke, A., Lichtenstein, P., Yashin, A.I., “A bivariate frailty model with a cure fraction for modeling familial correlations in diseases”, Biometrics, Vol.59, pp.1178 – 1183, 2003a.
[41] Wienke, A., Holm, N., Christensen, K., Skytthe, A., Vaupel, J., Yashin, A.I. , “The heri¬tability of cause-specific mortality: a correlated gamma-frailty model applied to mortality due to respiratory diseases in Danish twins born 1870 – 1930”, Statistics in Medicine, Vol. 22, pp.3873 – 3887, 2003b.
[42] Wienke, A., “Die Vererbbarkeit der Todesursache: ein correlated-frailty Modell angewendet auf Danische Zwillinge, geboren 1870 - 1930. In: R. Scholz und J. Flothmann (Hrsg)”, Lebenser-wartung und Mortalitat. Materialien zur Bevolkerungswissenschaft Heft 111, Wiesbaden, 81-98, 2004.
[43] Wienke, A., Herskind, A.M., Christensen, K., Skytthe, A., Yashin, A.I., “The heritability of CHD mortality in Danish twins after controlling for smoking and BMI”, Twin Research and Human Genetics, Vol.8, pp.53 – 59, 2005a.
[44] Xue, X., Brookmeyer, R., “Bivariate frailty model for the analysis of multivariate survival time”, Lifetime Data Analysis, Vol. 2, pp.277 – 290, 1996.
[45] Yashin, A.I., Vaupel, J.W., Iachine, I.A., “Correlated individual frailty: An advantageous approach to survival analysis of bivariate data”, Working Paper Series: Population Studies of Aging 7, CHS, Odense University, 1993.
[46] Yashin, A.I., Vaupel, J.W., Iachine, I.A., “Correlated individual frailty: An advantageous approach to survival analysis of bivariate data”, Mathematical Population Studies, Vol. 5, pp.145 – 159, 1995.
[47] Yashin, A.I., Iachine, I.A., “Genetic analysis of durations: Correlated frailty model applied to survival of Danish twins”, Genetic Epidemiology, Vol.12, pp.529 – 538, 1995a.
[48] Yashin, A.I., Iachine, I.A., “Survival of related individuals: an extension of some funda¬mental results of heterogeneity analysis”, Mathematical Population Studies, Vol.5, pp.321-39, 1995b.
[49] Yashin, A.I., Manton, K.G., Iachine, I.A., “Genetic and environmental factors in duration studies: multivariate frailty models and estimation strategies”, Journal of Epidemiology and Bio-statistics, Vol.1, pp.115 – 120, 1996.
[50] Yashin, A.I., Iachine, I.A., “How frailty models can be used for evaluating longevity limits: Taking advantage of an interdisciplinary approach”, Demography, Vol.34, pp.31 – 48, 1997.
[51] Yashin, A.I., Iachine, I., “Dependent hazards in multivariate survival problems”, Journal of Multivariate Analysis, Vol.71, pp.241 – 261, 1999a.
[52] Yashin, A.I., Iachine, I., “What difference does the dependence between durations make? Insights for population studies of aging”, Lifetime Data Analysis, Vol.5, pp.5 – 22, 199b.