References
[1]. Argyros, I.K. On a fixed point theorem in a 2-Banach space, Rev. Acad. Cienc. Zaragoza, 2, 44, 1989, 19-21.
[2]. Assad, N.A. & Kirk, W.A. Fixed point theorems for set-valued mappings of contractive type. Pac. J. Math. 43, 1972, 553-562.
[3]. Bae, J.S. Reflexive of a Banach space with a uniformly normal structure. Proc. Amer. Math. Soc., 90, 2, 1984, 269-270.
[4]. Bynum, W.L. Normal structure coefficients for Banach Spaces. Pacific J. Math. 86, 1980, 427-435.
[5]. Caristi, J. & Kirk, W.A. Geometric fixed point theory and inwardness conditions. Proc. Conf. On Geometry of Metric and Linear Spaces. Michigan State Univ., 1974.
[6]. Diestel, J. Geometry of Banach spaces. Lecture Notes. No.485, Springer-Verlag, Berlin, 1975.
[7]. Dotson, W.G. Jr. Fixed points of non-expansive mappings in non-convex sets. Proc. Amer. Math. Soc., 38, 1973, 155-156.
[8]. Dugundji, J. & Granas, A. Fixed point theory. PWN, Warsa, 1982.
[9]. Eberlin, W.F. Weak compactness in Banach spaces. Proc. Nat. Acad. Sci., USA, 33, 1947, 51-53.
[10]. Economou, E. Green’s Function in Quantum Physics, Springer Verlag, 1983.
[11]. Dunford, N. & Schwsartz, J.T. Linear operators, Part-I, Interscience, New York, 1958.
[12]. Fisher, B. Common fixed points on a Banach Space. The Chung Journal, vol.XI, 1982, 12-15.
[13]. Fisher, B. & Sessa, S. Two common fixed point theorems for weakly commuting mappings. Period. Math. Hunger. 20, 3, 1989, 207-218.
[14]. Jackson, J. Classical Electrodynamics, Weley, 1975.
[15]. Lim, Qi Hou The convergence theorems of the sequence of Ishikawa iteratres for Lei contractive mappings. J. Math. Anal. Appl. 148, No.1, 1990, 55-62.
[16]. Nakahara, M. Geometry, Topology and Physics, Adam Hilger, 1990.
[17]. Nelson, James L., Singh, K.L. & Whitefield, J.H.M. Normal structures and non-expansive mappings in Banach spaces, non-linear analysis. World Sci., Publishing Singapore, 1987, 433-492.
[18]. Smulian, V. On the principle on inclusion in the space of type (B), Math. Sornik (N.S.), 5, 1939, 327-328.
[19]. Watson, G.A. A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1995.
[20]. Xu, Hong Kun A note on the Ishikawa iteration scheme. J. Math. Anal. Appl. 167, No.2, 1992, 582-587.
[21]. Zeidler, E. Applied Functional Analysis, Springer-Verlag, 1995.