References
[1] G. F. Riemann, “Versuch Einer Allgemeinen Auffassung Der Integration Und Differentiation,” Gesammelte Mathematische Werke, Leipzig, 1896.
[2] J. Liouville, “Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions,” Journal de I’École. Polytéch. vol.13, pp.1–69, 1832.
[3] M. Caputo, “Elasticità e Dissipazione”. Bologna, 1969.
[4] I. Podlubny, “Fractional Differential Equations,” Academic Press, New York,1999.
[5] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, “Fractional Calculus,” Models and Numerical Methods, Boston, 2012.
[6] K. S. Miller, B. Ross, “An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[7] Y. Povstenko, “Linear Fractional Diffusion-Wave Equation for Scientists and Engineers” Birkhäuser, New York, 2015.
[8] D. Baleanu, G-C Wu, S-D. Zeng, “Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations,” Chaos, Solitons Fractals, vol.102, pp.99–105, 2017.
[9] N. H. Sweilam, M. M Hasan, D. Baleanu, “New studies for general fractional financial models of awareness and trial advertising decisions,” Chaos Solitons Fractals, vol.104, pp. 772–784, 2017.
[10] D. Y. Liu, O. Gibaru, W. Perruquetti, T. M. Laleg-Kirati, “Fractional order differentiation by integration and error analysis in noisy environment,” IEEE Trans. Autom. Control, vol.60, PP. 2945–2960, 2015. DOI: https://doi.org/10.3182/20130204-3-FR-4032.00208.
[11] A. Esen, T. A. Sulaiman, H. Bulut, H. M. Baskonus, “Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation,” Optik, vol.167, pp.150–156, 2018.
[12] P. Veeresha, D. G. Prakasha, H. M. Baskonus, “New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives,” Chaos, vol.29, Issue.013119, 2019. DIO: https://doi.org/10.1063/1.5074099.
[13] R. Caponetto, G. Dongola, L. Fortuna, A. Gallo “New results on the synthesis of FO-PID controllers,” Commun. Nonlinear Sci. Numer. Simul, vol.15,pp.997–1007,2010. DOI: http://dx.doi.org/10.1016/j.cnsns.2009.05.040.
[14] A. Prakash, P. Veeresha, D. G Prakasha, M. A. Goyal, “Homotopy technique for fractional order multi-dimensional telegraph equation via Laplace transform,” Eur. Phys. J. Plus, vol.134,pp.1–18,2019. DOI: http://dx.doi.org/10.1140/epjp/i2019-12411-y.
[15] P. Veeresha, D. G. Prakasha, H. M. Baskonus, “Novel simulations to the time-fractional Fisher’s equation,” Math. Sci.,vol.13, pp.33–42,2019. DOI:10.1007/s40096-019-0276-6. DOI: https://doi.org/10.1103/PhysRevA.15.319.
[16] J. B. Swift and P. C. Hohenberg, “Hydrodynamics fluctuations at the convective instability,” Phys. Rev. A, vol.15, pp.319–328, 1977.
[17] L. Lega, J. V. Moloney, A.C.Newell, “Swift–Hohenberg equation for lasers,” Phys. Rev. Lett., Vol.73, pp.2978–2981, 1994.
[18] L. A. Peletier and V. Rottschäfer, “Large time behaviour of solutions of the Swift–Hohenberg equation,” Comtes Rendu Mathematique, vol.336, pp.225–230, 2002. DOI: https://doi.org/10.1016/S1631-073X(03)00021-9.
[19] Y. Pomeau, and S. Zaleski, “Dislocation motion in cellular structures,” Phys. Rev. A, vol.27, pp.2710–2726, 1983. DOI: https://doi.org/10.1103/PhysRevA.27.2710.
[20] Y. Keskin, Selcuk University, Konya, Turkish, Ph.D. thesis, Department of Mathematics, Selcuk University ,2010.
[21] Y. Keskin and G. Oturanc, “Reduced differential transform method for partial differential equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol.10, pp. 741–749,2009. DOI: https://doi.org/10.1515/IJNSNS.2009.10.6.741.
[22] Y. Keskin and G. Oturanc, “The reduced differential transform method: a new approach to fractional partial differential equations,” Nonlinear Science Letters A, vol.1, no.2, pp.207–217, 2010.
[23] Y. Keskin and G. Oturanc, “The reduced differential transformation method for solving linear and nonlinear wave equations,” Iranian Journal of Science and Technology, vol.34, no.2, pp.113–122,2010.
[24] M. A. Abdou, “Fractional reduced differential transform method and its applications,” Journal of Nonlinear Sciences and Numerical Simulation, vol.26, pp.55–64, 2018.
[25] M. O. Al-Amr, “New applications of reduced differential transform method,” Alexandria Engineering Journal, vol.53, no. 1,pp.243–247,2014. DOI: https://doi.org/10.1016/j.aej.2014.01.003.
[26] M. S. Mohamed and K. A. Gepreel, “Reduced differential transform method for nonlinear integral member of Kadomtsev-Petviashvili hierarchy differential equations,” Journal of the Egyptian Mathematical Society, vol.25, no.1, pp.1–7, 2017. DOI: http://dx.doi.org/10.1016/j.joems.2016.04.007.
[27] R. K. Saeed and A. A. Mustafa, “Numerical solution of fisher-KPP equation by using reduced differential transform method,” in AIP Conference proceedings 11888(1), 020045, USA, 2017.
[28] H. Alrabaiah, I. Ahmad, K. Shah, I. Mahariqd, G. U. Rahmanf, “Analytical solution of non-linear fractional order Swift-Hohenberg equations,” Ain Shams Engineering Journal, In Press, Available online 6 March 2021. DOI: https://doi.org/10.1016/j.asej.2020.11.019.
[29] K. Nonlaopon, A. M. Alsharif, A. M. Zidan, A. Khan, Y. S. Hamed, R. Shah, “Numerical investigation of fractional-order Swift–Hohenberg equations via a novel transform,” Symmetry, vol.13(7),1263,2021. DOI: https://doi.org/10.3390/sym1307126326.
[30] D. G. Prakasha, P. Veeresha, H. M. Baskonus, “Residual power series method for fractional Swift–Hohenberg equation. Fractal Fract., vol.3(1), 9, 2019. DIO: https://doi.org/10.3390/fractalfract3010009.
[31] N. A. Khan, F. Riaz, N. A. Khan, “On solutions of nonlinear time-space fractional Swift–Hohenberg equation: A comparative study", Ain Shams Engineering Journal, vol.5, pp.285–291, 2014. DOI: http://dx.doi.org/10.1016/j.asej.2013.09.001.
[32] N. A. Khan, N-U. Khan, M. Ayaz, A. Mahmood, “Analytical methods for solving the time-fractional Swift–Hohenberg (S–H) equation,” Computers and Mathematics with Applications, vol.61, pp.2182–2185, 2011. DOI: https://doi.org/10.1016/j.camwa.2010.09.009.
[33] W. K. Zahra, M. A. Nasr, D. Baleanu, “Time-fractional nonlinear Swift-Hohenberg equation: Analysis and numerical simulation,” Alexandria Engineering Journal, vol.59, pp.4491–4510, 2020. DOI: https://doi.org/10.1016/j.aej.2020.08.002.
[34] V. K. Srivastava, M. K. Awasthi, and S. Kumar, “Analytical approximations of two and three dimensional time-fractional telegraphic equation by reduced differential transform method,” Egyptian Journal of Basic and Applied Sciences, vol.1, no.1, pp. 60–66, 2014. DOI: https://doi.org/10.1016/j.ejbas.2014.01.002.
[35] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, “A new definition of fractional derivative,” J. Comput. Appl. Math. Vol. 264, pp.65–70,2014. DOI: https://doi.org/10.1016/j.cam.2014.01.002.
[36] T. Abdeljawad, “On conformable fractional calculus,” J. Comput. Appl. Math. vol.279, pp.57–66, 2015. DOI: https://doi.org/10.1016/j.cam.2014.10.016.
[37] O. Acan, O. Firat, Y. Keskin, and G. Oturanc, “Solution of conformable fractional partial differential equations by reduced differential transform method,” Selcuk Journal of Applied Mathematics, 2016.