Volume-10 , Issue-4 , Aug 2022, ISSN 2348-3423 (Online) Go Back
-
Open Access Article
S.B. Doma, G.D. Roston, M.F. Ahmed
Research Paper | Journal-Paper (IJSRPAS)
Vol.10 , Issue.4 , pp.1-7, Aug-2022
Abstract
The problems of three electron interacting systems are considered in this paper. In the first part of the present paper, we considered the ground state, the lithium - like ions, and the core excited states of the lithium atom. Trial wave functions constructed from multiplication of hydrogenic wave functions and correlation wave functions are used in the calculations carried out in the first part. Furthermore, the compressed lithium atom by a hard wall spherical box is also investigated. In the second part of the present paper, we investigated the three-electron harmonium atom at which harmonic potential is used rather than the effect of Coulomb potential. The obtained results are in good agreement with the results of other works.Key-Words / Index Term
Ground state of the lithium atom, lithium iso electronic ions, excited states of lithium, confined lithium atom , three electron harmonium atomsReferences
[1] D. Ceperley, G. V. Chester and M. H. Kalos, “Monte Carlo simulation of a many-fermion study,” Phys. Rev. B, Vol. 16,pp. 3081-3099, 1977.
[2] W. A. Lester and B. L. Hammond, “Quantum Monte Carlo for the Electronic Structure of Atoms and Molecules,” Ann. Rev. Phys. Chem., Vol. 41, pp. 283-311, 1990.
[3] N. Metropolis, A. W. Rosenbluth, M. R. Rosenbluth, A. H. Teller and E. Teller, “Equation of State Calculations by Fast Computing Machines, ” J. Chem. Phys., Vol. 21,pp. 1087-1092, 1953.
[4] G. Dhingra, “Static Pair Correlation Function and Static Structure Factors of Unidirectional Quantum Systems,” Int. J. Sci. Res. Phys. Appl. Sci., Vol. 7, Issue. 3, pp. 1-5, 2019.
[5] C. Filippi and C. J. Umrigar, “Multi configuration wave functions for quantum Monte Carlo calculations of first row diatomic molecules,” J. Chem. Phys., Vol. 105, pp. 213, 1996.
[6] S. B. Doma, N. A. El-Nohy and M. A. Salem, “Ground state of Few Electron Atoms in a Strong Magnetic Field Using Diffusion Monte Carlo method,” Int. J. Sci. Res. Phys. Appl. Sci.,Vol. 8, Issue. 1, pp. 01-07, 2020.
[7] S. B. Doma, M. Abu-Shady, F. N. EL-Gammal and A. A. Amer, “Ground states of the hydrogen molecule and its molecular ion in the presence of a magnetic field using the variational Monte Carlo method,” Mol. Phys., Vol. 114, Issue 11, pp. 1787-1793, 2016.
[8] S. B. Doma, F. N. El-GammaL, A. A. Amer, “Ground state calculations of confined hydrogen molecule using variational Monte Carlo method, ” Mol. Physics., Vol. 116, Issue. 14, pp. 1827-1833, 2018.
[9] S. Doma, M. Shaker, A. Farag and F. El-Gammal, “Excited states of helium atom in a strong magnetic field using variational Monte Carlo technique, ” Ind. J. phys., Vol. 92, Issue. 3, pp. 279-288, 2018.
[10] S. B. Doma, H. S. El-Gendy, M. A. Abdel-Khalek and M. E. Mohamed, “Ground State of Beryllium Atom Using Variational Monte Carlo Method, ” Acta Phys. Pol. A, Vol. 138, Issue. 6, 2020.
[11] S. B. Doma, M. O. Shaker, A. M. Farag and F. N. El-Gammal, “Variational Monte Carlo calculations of lithium atom in strong magnetic field,” J. Exp. Theor. Phys., Vol. 124, Issue. 1, pp. 1-9, 2017.
[12] S. B. Doma, H. S. El-Gendy, M. A. Abdel-Khalek & M. M. Hejazi, “The ground state of the lithium atom in dense plasmas using variational Monte Carlo method,” Indian J. Phys., Vol. 95, pp. 2847-2853, 2020.
[14] Der-Ruenn Su, “Variational Calculations of the Li Atom and the Density-Functional Formalism in Theories of Solid Surfaces,” Chin. J. Phys., Vol. 27, Issue. 2, 1989.
[15] A. V. Turbiner, J. C. L. Vieyra and H. O. Pilón, “Few-electron atomic ions in non-relativistic QED: The ground state,” Ann. Phys., Vol. 409, pp. 167908, 2019.
[16] A. Borovik and A. Kupliauskien?, “The 1sn1l1n2l2 electron spectra of lithium atoms,” J. Phys. Conf. Ser., Vol. 488, pp. 042004, 2014.
[17] S. H. Patil and Y. P. Varshni, “A simple description of the spectra of confined hydrogen, helium, and lithium,” Can. J. Phys., Vol. 82, pp. 647–659, 2004.
[18] T. Sako and G. H. Diercksen, “Confined quantum systems: spectral properties of the atoms helium and lithium in a power series potential,” J. Phys. B: At., Mol. Opt. Phys., Vol. 36, pp. 1433-1457 ,2003.
[19] S. Dutta, J. K. Saha, R. Chandra, and T. K. Mukherjee, “Structural properties of lithium atom under weakly coupled plasma environment,” Phys. Plasmas, Vol. 23, pp. 042107, 2016.
[20] J. Cioslowski and K. Strasburger, “The three-electron harmonium atom: The lowest-energy doublet and quadruplet states,” J. Chem. Phys., Vol. 136, pp. 194112, 2012.
[21] M. B. Ruiz, “Hylleraas method for many-electron atoms. I. The Hamiltonian,” Int. J. Quantum Chem., Vol. 101, pp. 246-260, 2005.
[22] J. L. Marin and S. A. CNZ, “Use of the direct variational method for the study of one- and two-electron atomic systems confined by spherical penetrable boxes,” J. Phys. B: At., Mol. Opt. Phys., Vol. 25, pp. 4365-4371, 1992.
[23] E. Ludeña, “SCF Hartree–Fock calculations of ground state wavefunctions of compressed atoms,” J. Chem. Phys., Vol. 69, pp. 1770–75, 1978.
[24] J. Cioslowski and K. Pernal, “The ground state of harmonium,” J. Chem. Phys., Vol. 113, pp. 8434, 2000.
[25] T. N. Barbosa, M. M. Almeida and F. V. Prudente, “A quantum Monte Carlo study of confined quantum systems: application to harmonic oscillator and hydrogenic-like atoms,” J. Phys. B: At., Mol. Opt. Phys., Vol. 48, pp. 055002, 2015.Citation
S.B. Doma, G.D. Roston, M.F. Ahmed, "Application of the Variational Monte Carlo Method to the Three Electron Coulomb and Harmonium Systems," International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.4, pp.1-7, 2022 -
Open Access Article
Study of Lennard-Jones Potential at 300K between Carbon, Silver, Gold and Oxygen Atom
B. Koirala, S.H. Dhobi, P. Subedi, M. Gurung, N.K. Teemilsina
Research Paper | Journal-Paper (IJSRPAS)
Vol.10 , Issue.4 , pp.8-14, Aug-2022
Abstract
The major goal of this study is to look at the Lennard-Jone’s Potential (LJP) of different atoms and molecules as they interact. For this, we develop a mathematical model and compute developed model using MATLAB to investigate the Lennard-Jones Potential direct correlation function (LJPDCF) of different atoms/molecules interactions. The carbon-carbon, carbon-oxygen, oxygen-oxygen, water-water molecule, silver-silver, gold-silver, gold-carbon, and silver-carbon interactions were studied for this article. As a result, we discovered that the silver-silver interaction has a maximum LJP of -133.75 kcal/mole at a distance 3.5 ? and a minimum potential of -2.08 kcal/mole at distance 3.8 ? for the carbon-carbon interaction. We discovered a maximum LJPDCF of 3 × 1020 in the silver-silver interaction at a distance of 3.8 ? and a minimum Lennard-Jones Potential direct correlation function of 0.25 × 1019 in the carbon-carbon and carbon-oxygen interactions at 300K at the same distance of 4 ?. This research could aid in the understanding of the interactions between the considered atom and other atoms in various fields of molecular physics, computational chemistry, molecular models, etc.Key-Words / Index Term
Direct Correlation, Lennard-Jones Potential, InteractionReferences
[1] S. Cheng, J.B. Lechman, S.J. Plimpton, G.S. Grest, “Evaporation of Lennard-Jones fluids,” The Journal of Chemical Physics, Vol. 134, Issue.224704, pp.1-2, 2011.
[2] N. Inui, “Layered structure of Lennard-Jones particle systems confined in a step-shaped gap,” AIP Advances, Vol. 9, Issue.075315, pp.1-9, 2019.
[3] A. Arkundato, F. Monado, S. Misto, Z. Suud, “Performance of the Fe-Ni-Cr steel alloy in high temperature molten liquid lead,” Journal of Physics: Conference Series, Vol. 1170, Issue. 012010, pp.1-7, 2019.
[4] M.O. Ake, T. Ooi, “Determination of Energy Parameters in Lennard-Jones Potentials from Second Virial Coefficients,” Progress of Theoretical Physics, Vol. 48, Issue. 6B, pp.2132-2135, 1972.
[5] H. Tabe, K. Kobayashi, H. Fujii, M. Watanabe, “Molecular dynamics study on characteristics of reflection and condensation molecules at vapor–liquid equilibrium state,” PLoS ONE, Vol. 16, Issue.3, pp.1-10, 2021.
[6] L. Zarkova, U. Hohm, “Effective (n-6) Lennard-Jones Potentials with Temperature-Dependent Parameters Introduced for Accurate Calculation of Equilibrium and Transport Properties of Ethene, Propene, Butene, and Cyclopropane,” Journal of Chemical & Engineering Data, Vol. 54, Issue.6, pp.1648–1655, 2009.
[7] P. Schwerdtfeger, A. Burrows, O. R. Smits, “The Lennard Jones Potential Revisited – Analytical Expressions for Vibrational Effects in Cubic and Hexagonal Close-Packed Lattices,” arXiv, pp.1-3, 2020
[8] A. Arkundato, Z. Suud, M. Abdullah, W. Sutrisno, “Molecular dynamic simulation on iron corrosion-reduction in high temperature molten lead-bismuth eutectic,” Turkish Journal of Physics, Vol. 37, pp.132 – 144, 2013.
[9] D.A. Dan, “Three Body Interactions of Rare Gas Solids Calculated Within the Einstein Model” " Master`s Thesis, University of Tennessee, United States, 2016.
[10] Y.Y. Yimer, K.C. Jha, M. Tsige, “Epitaxial Transfer through End-Group Coordination Modulates Odd-Even Effect in Alkanethiol Monolayer Assembly,” Electronic Supplementary Material (ESI) for Nanoscale, The Royal Society of Chemistry, 2014
[11] F.S. Teixeira, M.C. Salvadori, “Nucleation of gold nanoclusters in PMMA during energetic plasma deposition: A molecular dynamics and tfMC-Monte Carlo study,” Physica E: Low-dimensional Systems and Nanostructures, Vol. 112, pp.19–25, 2019.
[12] C. Louis, O. Pluchery, “Gold Nanoparticles for Physics, Chemistry and Biology,” Imperial College Press, London, 2012.
[13] V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of Physics Condense Matter, Vol. 29, Issue.20, pp.2-6, 2017.
[14] A.V. Verkhovtsev, Y. Erofeev, A.V. Solovyov, “Soft landing of metal clusters on graphite: a molecular dynamics study,” arXiv, pp.1-11, 2005.
[15] S.H. Dhobi, M.D.J. Rangrej, U. Patel, N.B. Shrestha, S.K. Sharma, “Maximum Time and Distance needed for Pair Production inside Atom, Analytical and Theoretical,” International Journal of Scientific Research in Physics and Applied Sciences, Vol. 8, Issue.1, pp.16-19, 2020.
[16] S.H. Dhobi, “Nature of Masses Formed During Pair Production Reaction,” International Journal of Scientific Research in Journal of Physics and Chemistry of Materials, Vol. 7, Issue.4, pp.1-4, 2020.
[17] S. H. Dhobi, S. K. Das, K. Yadav, “Klein Nishina Differential Equation for the Selection of Radiation Shielding Material (C, Al, Fe, and Zn) on the Basis of Attenuation and Cross sectional Area,” European Journal of Applied Physics, Vol.3, Issue.1, pp.30-34, 2021.
[18] S. Bharadwaja, “Molecular Dynamics Simulation of Si Binding ang Diffusion on Native and Thermal Silicon Oxide Surface,” University of Toledo, United States, 2012.
[19] C.Y. Maghfiroh, A. Arkundato, W. Maulina, “Parameters (?, ?) of Lennard-Jones for Fe, Ni, Pb for?, ?Parameters ( Potential and Cr based on Melting Point Values Using the Molecular Dynamics Method of the Lammps Program,” Journal of Physics: Conference Series, Vol. 1491, Issue.012022, pp.1-8, 2020.
[20] R.U. Mardiyah, A. Arkundato, E. Purwandari, “Energy Cohesive Calculation for Some Pure Metals Using the Lennard-Jones Potential in Lammps Molecular Dynamics,” Journal of Physics: Conference Series, Vol. 1491, Issue. 012020, pp.1-4, 2020.
[21] K. Kholmurodov, E. Dushanov, K. Yasuoka, H. Khalil, A. Galal, S. Ahmed, N. Sweilam, H. Moharram, “Molecular dynamics simulation of the interaction of ethanol-water mixture with a Pt surface,” Natural Science, Vol. 3, Issue.12, pp.1011-1021, 2011.
[22] M.M. Heyhat, M. Abbasi, A. Rajabpour, “Molecular dynamic simulation on the density of titanium dioxide and silver water-based nanofluids,” arXiv, pp.1-7, 2022.
[23] S. Ding, Y. Tian, Z. Jiang, X. He, “Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint,” AIP Advances, Vol. 5, Issue. 057120, pp.1-3, 2015.
[24] F. Hirata, A. Kovalenko, “Description of a polar molecular liquidin a disordered microporous materialwith activating chemical groups by a replica RISM theory,” Condensed Matter Physics, Vol. 4, Issue.4, pp.643-678, 2001.
[25] M.A. Raeei, M.S.E. Daher, “Temperature dependence of the specifc volume of Lennard Jones potential and applying in case of polymers and other materials,” Polymer Bulletin, Springer-Verlag GmbH, Germany, pp.30-50, 2020.Citation
B. Koirala, S.H. Dhobi, P. Subedi, M. Gurung, N.K. Teemilsina, "Study of Lennard-Jones Potential at 300K between Carbon, Silver, Gold and Oxygen Atom," International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.4, pp.8-14, 2022 -
Open Access Article
Monitoring Climate Change using Satellite-observed Earth’s Surface Temperature: A Review
Thomas U. Omali
Review Paper | Journal-Paper (IJSRPAS)
Vol.10 , Issue.4 , pp.15-22, Aug-2022
Abstract
Anthropogenic influence on climate modification is currently apparent more than ever, and this is comprehensible from the measurements of various climate variables such as the Earth`s surface temperature. The investigation of climate variables is a challenging task as no one technique can reliably produce the essential data at both fine and broad scales. Accurate observations of surface temperature are traditionally available from functional ground-based weather stations. Unfortunately, this network of stations is not dense enough in terms of spatial extent for a detailed spatial assessment of the temperature field. However, the application of the satellite-based observation method makes it possible for multi-scale and instantaneous observations with a consistent temporal revisit concerning the Earth`s processes. Therefore, this review is primarily focused on monitoring climate change using surface temperature data from satellite remote sensing. Recent papers that were published in the English language between 2013 and 2022 were accessed and used for the review. The research specifically emphasized the global temperature trend, and Earth’s surface temperature observation including Land Surface Temperature, and Sea Surface Temperature. Summarily, it was shown that the satellite-based temperature time-series data is important for studying the climate system. Also, the current Earth Observation System and many proposed satellite systems will enhance assessment regarding the Essential Climate Variables. Thus, satellite remote sensing is a potent tool for comprehending the Earth`s surface temperature and climate change.Key-Words / Index Term
Air temperature; Anthropogenic; GHG; LST; Satellite; SST; Weather stationReferences
[1] S.M. Sterling, A. Ducharne, J. Polcher, “The Impact of Global Land-Cover Changes on the Terrestrial Water Cycle”, Nat. Clim. Chang., Vol.3, p.385, 2013.
[2] D.S. Matawal, D.J. Maton, “Climate Change and Global Warming: Signs, Impact and Solutions”, Int. J. Environ. Sci. Dev., Vol.4, pp.162-66, 2013.
[3] F. Johnsson, J. Kjärstad, J. Rootzén, “The Threat to Climate Change Mitigation Posed by the Abundance of Fossil Fuels”, Clim. Pol., Vol.19, No,2, pp.258-274, 2018.
[4] T.U. Omali, F.I. Okeke, “Global Significance Of Terrestrial Carbon Stocks”, GIS Business, 2020, Vol.15, No.4, pp.33-42.
[5] H. Zhang, F. Zhang, G. Zhang, Y. Ma, K. Yang, M. Ye, “Daily Air Temperature Estimation on Glacier Surfaces in the TibetanPlateau using MODIS LST Data”, Journal of Glaciology, Vol.64, No,243, pp.132–147, 2018.
[6] L.J. Cao, Y.N. Zhu, G.L. Tang, F. Yuan, Z.W. Yan, “Climatic Warming in China According to a Homogenized Dataset from 2419 Stations”, Int. J. Climatol., Vol.36, pp.4384–4392, 2016.
[7] Intergovernmental Panel on Climate Change, “Climate Change 2014 Synthesis Report Summary for Policymaker”, IPCC.CH. 2014. Available from: https://www. ipcc.ch/site/assets/uploads/2018/02/ AR5_SYR_FINAL_SPM.pdf
[8] Intergovernmental Panel on Climate Change, “Global Warming of 1.5 degrees Celsius Summary for Teachers”, IPCC. CH. 2018. Available from: https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/ST1.5_OCE_LR.pdf
[9] A.L. Gallant, W. Sadinski, J.F. Brown, “Senay, G.B., Roth, M.F. Challenges in Complementing Data from Ground-Based Sensors with Satellite-Derived Products to Measure Ecological Changes in Relation to Climate—Lessons from Temperate Wetland-Upland Landscapes”, Sensors, Vol.18, pp.880-918, 2018.
[10] S. Suresh, V. Ajay, K. Mani, “Estimation of Land Surface Temperature of High Range Mountain Landscape of Devikulam Taluk using Landsat 8 data. Int. J. Res. Engin. Technol., Vol.5, No.1, pp.92-96, 2016.
[11] I. Kloog, F. Nordio, B.A. Coull, J. Schwartz, “Predicting Spatiotemporal Mean Air Temperature using MODIS Satellite Surface Temperature Measurements across the Northeastern USA”, Remote Sens. Environ., Vol.150, pp.132–139, 2014.
[12] J. John, G. Bindu, B. Srimuruganandam, A. Wadhwa, P. Rajan, “Land Use/Land Cover and Land Surface Temperature Analysis in Wayanad District, India, using Satellite Imagery. Ann GIS., 2020. Available from https://doi. org/ 10. 1080/ 19475 683. 2020. 17336 62
[13] J.A. Torrion, S.J. Maas, W. Guo, J.P. Bordovsky, A.M. Cranmer, “A Three-Dimensional Index for Characterizing Crop Water Stress”, Remote Sens., Vol.6, pp.4025-4042, 2014.
[14] Z. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.F. Trigo, J.A. Sobrino, “Satellite-derived Land Surface Temperature: Current Status and Perspectives”, Remote Sens. Environ., Vol.131, pp.14–37, 2013.
[15] C. Cammalleri, J. Vogt, “On the Role Of Land Surface Temperature as Proxy of Soil Moisture Status for Drought Monitoring in Europe”, Remote Sens., Vol.7, pp.16849-16864, 2015.
[16] X. Meng, J. Cheng, S. Liang, “Estimating Land Surface Temperature from Feng Yun-3C/MERSI Data using a New Land Surface Emissivity Scheme”, Remote Sens., Vol.9, p.1247, 2017.
[17] L. Fang, X. Zhan, C. Hain, J. Yin, J. Liu, M. Schull, “An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts using two Different Data Assimilation Approaches”, Remote Sens., Vol.10, p,625, 2018.
[18] M. Martin, D. Ghent, A. Pires, F.-M. Göttsche, J. Cermak, J. Remedios, “Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Datasets over Multiple Stations and Years”, Remote Sens., Vol.11, p,479, 2019.
[19] S.-B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, R. Tang, “Generation of a Time-Consistent Land Surface Temperature Product from MODIS Data”, Remote Sens., Environ., Vol.140, pp.339-349, 2014.
[20] U. Avdan, G. Jovanovska, “Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data”, Journal of Sensors, Article ID 1480307, 8 pages, 2016. Available from http://dx.doi.org/10.1155/2016/1480307
[21] R. Singh, C. Singh, S.P. Ojha, A.S. Kumar, C.M. Kishtawal, A.S.K. Kumar, “Land Surface Temperature from INSAT-3D Imager Data: Retrieval and Assimilation in NWP Model”, J. Geophys. Res. Atmos., Vol.121, pp.6909–6926, 2016, doi:10.1002/2016JD024752.
[22] A.G. O`Carroll, E.M. Armstrong, H.M. Beggs, M. Bouali, K.S. Casey, G.K. Corlett, W. Wimmer, “Observational Needs of Sea Surface Temperature”, Front. Mar. Sci., Vol. 6, p.420, 2019.
[23] A. Ogunode, M. Akombelwa, “An Algorithm to Retrieve Land Surface Temperature using Landsat-8 Dataset”, South African Journal of Geomatics, Vol.6, No.2, pp.262-276, 2017.
[24] K.B. Mao, Y. Maa, X.L. Tan, X.Y. Shen, G. Liu, Z.L. Li, J.M. Chen, L. Xia, “Global surface temperature change analysis based on MODIS data in recent twelve years”, Advances in Space Research, Vol.59, pp.503–512, 2016.
[25] H.-M. Zhang, J.H. Lawrimore, B. Huang, M.J. Menne, X. Yin, A. Sánchez-Lugo, …, C.N. Williams, “Updated temperature data give a sharper view of climate trends”, EOS. 2019. https ://doi.org/10.1029/2019E O1282 29
[26] K. Cowtan, R.G. Way, “Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends”, Q J R Meterol. Soc., Vol.140, pp.1935–1944, 2014. doi: https ://doi.org/10.1002/qj.2297
[27] D. Ilyas, Q. Junaid, S. Aparna, “Estimation of LST from multisensor thermal remote sensing data and evaluating the influence of sensor characteristics”, Annals of GIS, Vol.25, No.3, pp.263-281, 2019. doi: 10.1080/19475683.2019.1623318
[28] P.K. Koner, “Enhancing Information Content in the Satellite-Derived Daytime Infrared Sea Surface Temperature Dataset Using a Transformative Approach”, Front. Mar. Sci., Vol.7, 556626, 2020. doi: 10.3389/fmars.2020.556626
[29] A. Kumar, M.P. Sharma, “Assessment of carbon stocks in forest and its implications on global climate changes”, J. Mater. Environ. Sci., Vol.6, No.12, pp.3548-3564, 2015.
[30] A.B. Berlie, “Global Warming: A Review of the Debates on the Causes, Consequences and Politics of Global Response”, Ghana Journal of Geography, Vol.10, No.1, pp.144–164, 2018.
[31] National Oceanic and Atmospheric Administration, “Carbon dioxide levels in the atmosphere hit a record high in May viewed 6 June 2020”, Available from https://www.noaa.gov/news/Carbon-dioxide-levels-in-atmosphere-hit-record- high-in-may
[32] O.R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, … , J.C. Minx, (Eds.), “Climate change 2014: Mitigation of Climate Change”, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer]. Cambridge University Press, Cambridge, UK & New York, NY, 2014.
[33] U. Cubasch, D. Wuebbles, D. Chen, M.C. Facchini, D. Frame, N. Mahowald, J.-G. Winther, Introduction. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, …, P.M. Midgley, (Eds.)., “Climate Change 2013: The Physical Science Basis”, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom & New York, NY, USA, 2013.
[34] A.V. Karmalkar, R.S. Bradley, “Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States”, PLoS ONE, Vol.12, No.1, e0168697., 2017. doi:10.1371/journal. pone.0168697
[35] A. Gulzar, M.A. Mehmood, S.A. Ganie, I. Showqi, “A Brief Review on Global Warming and Climate Change: Consequences and Mitigation Strategies”, International Journal of Research in Science and Engineering, Vol.7, No.4, pp.2146-2156, 2018.
[36] G.C. Hegerl, S. Brönnimann, T. Cowan, A.R. Friedman, E. Hawkins, C. Iles, …, S. Undorf, “Causes of Climate Change over the Historical Record”, Environ. Res. Lett., 14, 123006, 2019.
[37] G. Madge, “2022 is expected to continue the run of the world`s warmest years”, Press release, 13:44 (UTC) on Tue 21 Dec 2021. Available from https://www.metoffice.gov.uk/about-us/press-office/news/weather-and-climate/2021/2022-global-temperature-forecast#:~:text=The%20Met%20Office`s%20forecast%20for,temperature%20so%20far%20this%20year.
[38] S.J. Hooker, G. Duveiller, A. Cescatti, “A Global Dataset of Air Temperature Derived from Satellite Remote Sensing and Weather Stations”, Sci. Data., Vol.5,180246, 2018.
[39] C.-D. Xu, J.-F. Wang, M.-G. Hu, Q.-X. Li, “Interpolation Of Missing Temperature Data at Meteorological Stations using P-BSHADE”, J. Clim., Vol.26, No.19, pp.7452–7463, 2013.
[40] Intergovernmental Panel on Climate Change, Climate Change 2013. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, ..., P.M. Midgley (eds.)]. The Physical Science Basis”, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom & New York, USA, 2013.
[41] NOAA National Centers for Environmental Information, “State of the Climate: Global Climate Report for Annual 2021”, published online January 2022. Available from https://www.ncdc.noaa.gov/sotc/global/202113.
[42] R. Krishnan, C. Dhara, The Executive Summary (ES). In R. Krishnan, J. Sanjay, C. Gnanaseelan, M. Mujumdar, A. Kulkarni, S. Chakraborty, (Eds.)., “Assessment of Climate Change over the Indian region: A Report of the Ministry of Earth Sciences (MoES), Government of India”, Springer Nature. Singapore, 2020. Available from https://doi.org/10.1007/978-981-15-4327-2
[43] Intergovernmental Panel on Climate Change, “The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change”, IPCC, CH. 2021. ISBN 978-92-9169-158-6.
[44] D.L. Hartmann, A.M.G. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y. Charabi, …, P.M. Zhai, Observations: Atmosphere and Surface. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, ..., P.M. Midgley, (Eds.)., “Climate Change 2013: The Physical Science Basis”, Contribution of Working Group I to the Fifth Assessment Report of the IPCC. Cambridge University Press, Cambridge, United Kingdom & New York, USA, 2013.
[45] Climate Central, “Top 10 Warmest Years on Record. Researching and reporting the science and impacts of climate change”, 2020. Available from https://www.climatecentral.org/gallery/graphics/top-10-warmest-years-on-record
[46] S.K. Gulev, P.W. Thorne, J. Ahn, F.J. Dentener, C.M. Domingues, S. Gerland, …, R.S. Vose, Changing State of the Climate System (Chapter 2). In V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, …, B. Zhou, (eds.)]., “Climate Change: The Physical Science Basis”, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, UK, 2021.
[47] World Meteorological Organization, “The State of the Global Climate”, public. wmo. int., 2020.
[48] World Meteorological Organization, “The State of Climate in 2021: Extreme events and major impacts”, Press Release Number: 31102021, 2021.
[49] N. Watts, M. Amann, N. Arnell, S. Ayeb-Karlsson, J. Beagley, K. Belesova, A. Costello, “The 2020 report of The Lancet Countdown on health and Climate Change: Responding to Converging Crises”, The Lancet, Vol.397, No.10269, pp.129–170, 2021. Available from doi:10.1016/S0140-6736(20)32290-X.
[50] H. Guan, X.P. Zhang, O. Makhnin, Z.A. Sun, “Mapping Mean Monthly Temperatures over a Coastal Hilly Area Incorporating Terrain Aspect Effects”, J. Hydrometeorol., Vol.14, pp.233–250, 2013.
[51] S. Chen, J. Guo, “Spatial Interpolation Techniques: their Applications in Regionalizing Climate-Change Series and Associated Accuracy Evaluation in Northeast China”, Geomatics. Natural Hazards and Risk, Vol.8, No.2, pp.689-705, 2017.
[52] M. Kilibarda, T. Hengl, G.B.M. Heuvelink, B. Gräler, E. Pebesma, M. Perffcec Tadic´, B. Bajat, “Spatiotemporal Interpolation of Daily Temperatures for Global Land Areas at 1 km Resolution”, J. Geophys. Res. Atmos., Vol.119, pp.2294–2313, 2014.
[53] B. Parmentier, B. McGill, A. Wilson, J. Regetz, W. Jetz, R. Guralnick, …, M. Schildhauer, “An Assessment of Methods and Remote-Sensing Derived Covariates for Regional Predictions of 1 km Daily Maximum Air Temperature”, Remote Sensing, Vol.6, No.9, pp.8639–8670, 2014. Available from https://doi.org/10.3390/rs6098639
[54] Y. Xu, A. Knudby, H.C. Ho, “Estimating Daily Maximum Air Temperature from MODIS in British Columbia, Canada”, Int. J. Remote Sens., 2014, Vol.35, pp.8108–8121.
[55] L.J. Cao, P. Zhao, Z.W. Yan, P. Jones, Y.N. Zhu, Y. Yu, G.L. Tang, “Instrumental Temperature Series in Eastern and Central China Back to the Nineteenth Century”, J. Geophys. Res. Atmos., Vol.118, pp.8197–8207, 2013.
[56] L. Li, W. Zhang, T. Xu, J. Zhou, P. Wang, P. Zhai, P. Jones, “Comparisons Of Time Series of Annual Mean Surface Air Temperature for China Since the 1900s”, Bull. Amer. Meteor. Soc., Vol.98, pp.699–711, 2017.
[57] H. Zhang, F. Zhang, M. Ye, T. Che, G. Zhang, “Estimating Daily Air Temperatures over the Tibetan Plateau by Dynamically Integrating MODIS LST Data”, J. Geophys. Res. Atmos., Vol.121, No.19, pp.425–441, 2016.
[58] M. Otgonbayar, C. Atzberger, M. Mattiuzzi, A. Erdenedalai, “Estimation of Climatologies of Average Monthly Air Temperature over Mongolia using MODIS Land Surface Temperature (LST) Time Series and Machine Learning Techniques”, Remote Sens., Vol.11, No.21, pp.1–24, 2019.
[59] R. Huang, C. Zhang, J. Huang, D. Zhu, L. Wang, J. Liu, “Mapping of Daily Mean Air Temperature in Agricultural Regions using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data”, Remote Sensing, Vol.7, No.7, pp.8728–8756, 2015.
[60] W. Zhu, A. Liu, S. Jia, “Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products”, Remote Sens Environ., Vol.130, pp.62–73, 2013.
[61] P.T. Noi, M. Kappas, J. Degener, “Estimating Daily Maximum and Minimum Land Air Surface Temperature using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam”, Remote Sens., Vol.8, No.12, p.1002, 2016.
[62] S. Liu, H. Su, R. Zhang, J. Tian, W. Wang, “Estimating the Surface Air Temperature by Remote Sensing in Northwest China using an Improved Advection-Energy Balance for Air Temperature Model”, Adv. Meteorol., Article ID 4294219. (11 pages), 2016.
[63] C.E. Bulgin, O. Embury, C.J. Merchant, “Sampling Uncertainty in Gridded Sea Surface Temperature Products and Advanced Very High-Resolution Radiometer (AVHRR) Global Area Coverage (GAC) data”, Remote Sens. Environ., Vol.177, pp.287–294, 2016.
[64] N. Clinton, P. Gong, “MODIS Detected Surface Urban Heat Islands and Sinks: Global Locations and Controls”, Remote Sens. Environ., Vol.134, pp.294–304, 2013.
[65] B. Wei, Y. Bao, S. Yu, S. Yin, Y. Zhang, “Analysis of Land Surface Temperature Variation Based on MODIS Data a Case Study of the Agricultural Pastural Ecotone of Northern China”, International Journal of Applied Earth Observations and Geoinformation, Vol.100, 102342, 2021.
[66] A. Rajeshwari, N.D. Mani, “Estimation of Land Surface Temperature of Dindigul District Using Landsat 8 Data”, International Journal of Research in Engineering and Technology, Vol.3, No.5, 2014.
[67] F. Wang, Z. Qin, C. Song, L. Tu, A. Karnieli, S. Zhao, “An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data”, Remote. Sens., Vol.7, No.4, 4268 – 4289, 2015.
[68] F. Zhang, H. Kung, V.C. Johnson, B.I. LaGrone, J. Wang, “Change Detection of Land Surface Temperature and Some Related Parameters using Landsat Image: A Case Study of the Ebinur Lake Watershed, Xinjiang, China”, Wetlands, Vol.38, 65–80, 2017.
[69] M. Ndossi, U. Avdan, “Inversion of Land Surface Temperature using Terra ASTER Data: A Comparison of three Algorithms”, Remote Sens., Vol.8, pp.993–1012, 2016.
[70] Z. Hilman, A. Saepuloh, V. Susanto, “Application of Land Surface Temperature Derived from ASTER TIR to Identify Volcanic Gas Emission around Bandung Basin”, International Journal of Remote Sensing and Earth Sciences, Vol.16, No.2, pp.179-186, 2019.
[71] P. Guillevic, J. Biard, G. Hulley, J. Privette, S. Hook, A. Olioso, …, I. Csiszar, “Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements”, Remote Sens., Environ., Vol.154, pp.19–37, 2014.
[72] H. Li, D. Sun, Y. Yuc, H. Wang, Y. Liue, Q. Liua, ..., B. Cao, “Evaluation of the VIIRS and MODIS LST Products in an Arid Area of Northwest China”, Remote Sensing of Environment, 142, pp.111–121, 2014.
[73] B.H. Tang, K. Shao, Z.L. Li, H. Wu, F. Nerry, G.Q. Zhou, “Estimation and Validation of Land Surface Temperatures from Chinese Second-Generation Polar-Orbit FY-3a VIRR Data”, Remote Sens., Vol.7, pp.3250–3273, 2015.
[74] C.E. Bulgin, O. Embury, G. Corlett, C.J. Merchant, “Independent Uncertainty Estimates for Coefficient Based Sea Surface Temperature Retrieval from the Along-Track Scanning Radiometer instruments”, Remote Sens. Environ., Vol.178, pp.213–222, 2016.
[75] D.J. Ghent, G.K. Corlett, F.M. Göttsche, J.J. Remedios, “Global Land Surface Temperature from the Along-Track Scanning Radiometers”, J. Geophys. Res. Atmos., Vol.122, pp.167–193, 2017.
[76] X. Ouyang, D. Chen, S.B. Duan, Y. Lei, Dou, Y., Hu, G. , “Validation and Analysis of Long-Term AATSR Land Surface Temperature Product in the Heihe River Basin, China”, Remote Sens., Vol.9, p.152, 2017.
[77] Z. Heng, X. Jiang, “An Assessment of the Temperature and Humidity of Atmospheric Infrared Sounder (AIRS) v6 Profiles Using Radiosonde Data in the Lee of the Tibetan Plateau”, Atmosphere, Vol.10, p.394, 2019. doi:10.3390/atmos10070394
[78] F.M. Göttsche, F.S. Olesen, A. Bork-Unkelbach, “Validation of Land Surface Temperature Derived from MSG/SEVIRI with In Situ Measurements at Gobabeb, Namibia”, Int. J. Remote Sens., Vol.34, pp.3069–3083, 2013.
[79] F.M. Göttsche, F. Olesen, I. Trigo, A. Bork-Unkelbach, M. Martin, “Long Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous In-situ Measurements in Africa”, Remote Sens., Vol.8, No.5, p.410, 2016.
[80] O. Orhan, S. Ekercin, F. Dadaser-Celik, “Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey”,The Scientific World Journal. Article ID 142939. (11 pages), 2014.
[81] R. Van de Kerchove, S. Lhermitte, S. Veraverbeke, R. Goossens, “Spatio-Temporal Variability in Remotely Sensed Land Surface Temperature, and its Relationship with Physiograhic Variables in the Russian Altay Mountains”, International Journal of Applied Earth Observation, Vol.20, pp.4– 19, 2013.
[82] P.W. Thorne, M.G. Donat, H.J.R. Dunn, C.N. Williams, L.V. Alexander, “Reassessing Changes in Diurnal Temperature Range: Intercomparison and Evaluation of Existing Global Data Set Estimates”, J. Geophys. Res. Atmos., Vol.121, pp.5138–5158, 2016.
[83] L. Hu, Y. Sun, G. Fu, P. Collins, “Improved Estimates of Monthly Land Surface Temperature from MODIS using a Diurnal Temperature Cycle (DTC) Model”, ISPRS J. Photogramm. Remote Sens., Vol.168, pp.131– 140, 2020.
[84] T.U. Omali, “Ecological Evaluation of Urban Heat Island Impacts in Abuja Municipal Area of FCT Abuja, Nigeria”, World Academics Journal of Engineering Sciences, Vol.7, No.1, pp.66– 72, 2020.
[85] C. Kuenzer, S. Dech, “Thermal Infrared Remote Sensing”, Remote Sensing and Digital Image Processing. Vol.10, pp.978– 994, 2013.
[86] A. Balewa, T. Korme, “Monitoring Land Surface Temperature in Bahir Dar City and its Surrounding using Landsat Images”, The Egyptian J. Remote Sens. Space Sci., Vol.23, pp.371–386, 2020.
[87] S.B. Duan, Z.L. Li, P. Leng, “A Framework for the Retrieval of All-Weather Land Surface Temperature at a High Spatial Resolution from Polar-Orbiting Thermal Infrared and Passive Microwave Data.” Remote Sensing of Environment, Vol.195, pp.107–117, 2017.
[88] C. Huang, S.B. Duan, X.G. Jiang, X.J. Han, P. Leng, M.F. Gao, Z.L. Li, “A Physically Based Algorithm for Retrieving Land Surface Temperature under Cloudy Conditions from AMSR2 Passive Microwave Measurements”, Int. J. Remote Sens., Vol.40, 1828–1843, 2019.
[89] H. Meyer, M. Katurji, F. Detsch, F. Morgan, T. Nauss, P. Roudier, P. Zawar-Reza, “AntAir: Satellite-Derived 1 km Daily Antarctic Air Temperatures since 2003”, Earth Syst Sci Data Discuss., pp.1–18, 2019.
[90] W. Zhu, A. L?, S. Jia, “Estimation of Daily Maximum and Minimum Air Temperature using MODIS Land Surface Temperature Products”, Remote Sens. Environ., Vol.130, pp.62–73, 2013.
[91] S.B. Duan, Z.L. Li, H. Wu, P. Leng, M.F. Gao, C.G. Wang, “Radiance-Based Validation of Land Surface Temperature Products Derived from Collection 6 MODIS Thermal Infrared Data.” International Journal of Applied Earth Observation and Geoinformation, Vol.70, pp.84–92, 2018.
[92] J.A. Sobrino, Y. Julien, “Trend Analysis of Global MODIS-Terra Vegetation Indices and Land Surface Temperature Between 2000 and 2011”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.6, pp.2139–2145, 2013.
[93] L. Hu, N.A. Brunsell, A.J. Monaghan, M. Barlage, O.V. Wilhelmi, “How Can We use MODIS Land Surface Temperature to Validate Long-Term Urban Model Simulations?”, J. Geophys. Res. Atmos., Vol.119, pp.3185–3201, 2014.
[94] C.L. Zhou, K.C. Wang, “Land Surface Temperature Over Global Deserts: Means, Variability, and Trends”, Journal of Geophysical Research: Atmospheres, Vol.121, pp.344–357, 2016.
[95] J. Liu, D. Fiifi, T. Hagan, Y. Liu, “Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land-Based Analysis”, Remote Sens., Vol.13, p.44, 2021. Available from: https://doi.org/10.3390/rs13010044.
[96] S.M. Jaber, M.M. Abu-Allaban, “MODIS-Based Land Surface Temperature for Climate Variability and Change Research: the Tale of a Typical Semi-Arid to an Arid Environment”, Euro. J. Remote Sens., Vol.53, No.1, pp.81–90, 2020.
[97] X. Lian, Z.Z. Zeng, Y.T. Yao, S.S. Peng, K.C. Wang, S.L. Piao, “Spatiotemporal Variations in the Difference Between Satellite-Observed Daily Maximum Land Surface Temperature and Station-Based Daily Maximum Near-Surface Air Temperature”, Journal of Geophysical Research: Atmospheres, Vol.122, pp.2254–2268, 2017.
[98] E. Good, “Daily Minimum and Maximum Surface Air Temperatures from Geostationary Satellite Data. J. Geophys. Res. Atmos., Vol.120, No.6, pp.2306–2324, 2015.
[99] Y. Chen, H. Sun, J. Li, “Estimating Daily Maximum Air Temperature with MODIS Data and a Daytime Temperature Variation Model in Beijing Urban Area”, Remote Sens Lett., Vol.7, No.9, pp.865–874, 2016.
[100]T.N. Phan, M. Kappas, K.T. Nguyen, T.P. Tran, Q.V. Tran, A.R. Emam, “Evaluation of MODIS land surface temperature products for daily air surface temperature estimation in northwest Vietnam”, Int J Remote Sens., Vol.40, No.14, pp.5544–5562, 2019.
[101]Bentamy, A., Piolle, J.F., A Grouazel, R Danielson, S Gulev, et al., "Review and Assessment of Latent and Sensible Heat Flux Accuracy over the Global Oceans”, Remote Sens. Environ., Vol.201, pp.196–218, 2017.
[102]F. Pastor, J.A. Valiente, S.A. Khodayar, “Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature”, Remote Sens., Vol.12, pp.2687–2703, 2020.
[103]P.J. Minnett, A. Alvera-Azc´arate, T.M. Chin, G.K. Corlett, C.L. Gentemann, I. Karagali, …, J. Vazquez-Cuervo, “Half a century of satellite remote sensing of sea-surface temperature”, Remote Sens. Environ., Vol.233, 111366, 2019.
[104]I. Gladkova, A. Ignatov, F. Shahriar, Y. Kihai, D. Hillger, B. Petrenko, “Improved VIIRS and MODIS SST imagery”, Remote Sens., Vol.8, No.1, p.79, 2016.
[105] T.M. Chin, J. Vazquez-Cuervo, E.M. Armstrong, “A Multi-Scale Highresolution Analysis of Global Sea Surface Temperature”, Remote Sens. Environ., Vol.200, pp.154–169, 2017.Citation
Thomas U. Omali, "Monitoring Climate Change using Satellite-observed Earth’s Surface Temperature: A Review," International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.4, pp.15-22, 2022 -
Open Access Article
Ram Kripal
Research Paper | Journal-Paper (IJSRPAS)
Vol.10 , Issue.4 , pp.23-28, Aug-2022
Abstract
The crystal field parameters (CFPs) of Mn2+ doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II) (ACD) single crystal are determined using superposition model (SPM). The zero field splitting parameters (ZFSPs) D and E are then found with the help of perturbation and microscopic spin Hamiltonian (SH) theory. The evaluated D and E show reasonable agreement with the experimental values from electron paramagnetic resonance. The results indicate that the Mn2+ ion enters the lattice substitutionally at Cd2+ site in ACD crystal. The procedure used here may be applied for the modeling of other ion-host systems.Key-Words / Index Term
A. Inorganic compounds; A. Single Crystal; C. Crystal structure and symmetry; D. Crystal and ligand fields; D. Optical properties; E. Electron paramagnetic resonance.References
[1] V.S Xavier Anthonisamy, D. Pathinettam Padiyan, R. Murugesan, “Single-crystal EPR studies on Ni(II)- and Mn(II)-doped hexakis(pyrazole) complexes of Zn(II) and Cd(II): a trigonally distorted cubic environment”, Mol. Phys., Vol. 94, Issue 2, pp. 275-281, 1998.
[2] A. Milton Franklin Benial, V. Ramakrishnan, R. Murugesan, “Single crystal electron paramagnetic resonance study of Mn(II) doped Zn(C5H5NO)6(BF4)2: probe into site symmetry”, Spectrochim. Acta. Part A, Vol. 55, Issue 13, pp. 2573-2577, 1999.
[3] Ch. Linga Raju, N.O. Gopal , K.V. Narasimhulu, J. Lakshmana Rao, B.C Venkata Reddy, “EPR, optical and infrared absorption studies of Mn2+ ions doped in zinc malate trihydrate single crystal”, Spectrochim. Acta. Part A, Vol. 61, Issue 9, pp. 2181-2187, 2005.
[4] R. Kripal, Vishal Mishra, “ESR and optical study of Mn2+ doped potassium hydrogen sulphate”, Solid State Commun., Vol. 133, Issue 1, pp. 23-28, 2005.
[5] A. Ozarowski, B. R. McGarvey, “EPR study of manganese(II) and copper(II) in single crystals of the spin-crossover complex hexakis(1-propyltetrazole)iron(2+) tetrafluoroborate(1-)”, Inorg.Chem., Vol. 28, Issue 6, pp. 2262-2266, 1989.
[6] V. S. Xavier Anthonisamy, M. Velayutham, R. Murugesan, “Spin-lattice relaxation of Co(II) in hexaaquocobalt(II) picrylsulphonate tetrahydrate: An estimate from EPR line width of the dopant, Mn(II)”, Physica B, Vol. 262, Issues 1-2, pp. 13-19, 1999.
[7] R. Murugesn, A. Thamaraichelvan, A. Milton Franklin, V.Ramakirshnan, “Host spin-lattice relaxation narrowing and the electron paramagnetic resonance of Mn(II) in single crystals of hexakis(pyridine N-oxide)cobalt(II) complexes”, Mol. Phys., Vol. 79, Issue 3, pp. 663-672, 1993.
[8] V. Singh, R. P. S. Chakradhar, J. L. Rao, S. J. Dhoble, S. H. Kim , “Electron Paramagnetic Resonance and Photoluminescence Studies of LaMgAl11O19:Mn2+ Green Phosphors”, J. Electron. Mater., Vol. 43, Issue 11, pp. 4041–4047, 2014.
[9] V. Singh, G. Sivaramaiah, J.L. Rao, S.H. Kim, “Optical and EPR properties of BaAl12O19:Eu2+, Mn2+ phosphor prepared by facile solution combustion approach”, J. Lumin., Vol. 157, pp. 74–81, 2015.
[10] B. Jaya Raja, M. Rajesh Yadav, V. Pushpa Manjari, B. Babu, Ch. Rama Krishna, R.V.S.S.N. Ravikumar, “Synthesis and characterization of undoped and Mn(II)ions doped Li2CaAl4(PO4)4F4 nanophosphors”, J. Mol. Struct., Vol.1076, pp. 461–467, 2014.
[11] A. K. Gupta, R. Kripal, “EPR and photoluminescence properties of Mn2+ doped CdS nanoparticles synthesized via co-precipitation method”, Spectrochim. Acta. Part A, Vol. 96, pp. 626–631, 2012.
[12] D. J. Newman, “On the g-shift of S-state ions”, J. Phys. C: Solid State Phys., Vol. 10, pp. L315-L318, 1977.
[13] M. I. Bradbury, D. J. Newman, “Ratios of crystal field parameters in rare earth salts”, Chem. Phys. Lett., Vol. 1, pp. 44-45, 1967.
[14] Y. Y. Yeung, “Local distortion and zero-field splittings of 3d5 ions in oxide crystals”, J. Phys. C: Solid State Phys., Vol. 21, pp. 2453-61, 1988.
[15] E. Siegel and K. A. M ller, „Local position of Fe3+ in ferroelectric BaTiO3”, Phys. Rev. B, Vol. 20, pp. 3587-95, 1979.
[16] M. G. Brik, C. N. Avram, N. M Avram, “Calculations of spin Hamiltonian parameters and analysis of trigonal distortions in LiSr(Al,Ga)F6:Cr3+ crystals”, Physica B, Vol. 384, pp. 78-81, 2006.
[17] M. L Du, M. G. Zhao, „The eighth-order perturbation formula for the EPR cubic zero-field splitting parameter of d5(6S) ion and its applications to MgO:Mn2+ and MnCl2.2H2O”, J. Phys. C: Solid State Phys., Vol. 18, pp. 3241-3248, 1985.
[18] W. L. Yu, “Cubic zero-field splitting of a 6S state ion,” Phys. Rev. B, Vol. 39, pp. 622-632, 1989.
[19]. T. H. Yeom, S. H. Choh, M. L. Du, “A theoretical investigation of the zero-field splitting parameters for an Mn2+ centre in a BiVO4 single crystal”, J. Phys.: Condens. Matter, Vol. 5, pp. 2017-2024, 1993.
[20] Z. Y. Yang, ”An investigation of the EPR zero-field splitting of Cr3+ ions at the tetragonal site and the Cd2+ vacancy in RbCdF3:Cr3+ crystals”, J. Phys.: Condens. Matter, Vol. 12, pp. 4091-4096, 2000.
[21] H. Headlam, M. A. Hitchman, H. Stratmeir, J. M. M. Smits, P. T. Beurskens, E.de Boer, G. Janssen, B. M. Gatehouse, G. B. Deacon, G. N. Ward, M. J. Riley, D. Wang, “Interpretation of the Temperature Dependence of the EPR Spectrum of Cu2+-Doped
(NH4)2 [Cd(NH3)2(CrO4)2] and Crystal Structures of the High- and Low-Temperature Forms of the Host Lattice”, Inorg. Chem., Vol. 34, pp. 5516-5523, 1995.
[22] K. Vijayaraj, A. Jawahar, R. Anantharam, M. Kumara Dhas, “Single Crystal Q-Band EPR Studies of Mn (II) Doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II)”, IOSR J. Appl. Phys.(IOSR-JAP), Vol. 9, pp. 64-70, 2017.
[23] W. L. Yu, M.G. Zhao, ”Spin-Hamiltonian parameters of 6S state ions”, Phys. Rev. B, Vol. 37, pp. 9254-9267, 1988.
[24] A. Abragam, B. Bleaney, EPR of Transition Ions, Clarendon Press, Oxford, UK, 1970.
[25] C. Rudowicz, ”Concept of spin Hamiltonian, forms of zero field splitting and electronic Zeeman Hamiltonians and relations between parameters used in EPR. A critical review”, Magn. Reson. Rev., Vol. 13, pp. 1-89, 1987.
[26] C. Rudowicz, H. W. F. Sung, “Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters?”, Physica B, Vol. 300, pp. 1- 26, 2001.
[27] C. J. Radnell, J. R. Pilbrow, S. Subramanian, M. T. Rogers, ‘Electron paramagnetic resonance of Fe3+ ions in (NH4)2SbF5”, J. Chem. Phys., Vol. 62, pp. 4948-4952, 1975.
[28] J. A. Weil, J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd Edition, Wiley, New York, USA, 2007.
[29] C. Rudowicz, S. B. Madhu, “Orthorhombic standardization of spin-Hamiltonian parameters for transition-metal centres in various crystals”, J. Phys.: Condens. Matter, Vol. 11, pp. 273-288, 1999.
[30] C. Rudowicz and R. Bramley, “On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry”, J. Chem. Phys.. Vol. 83, pp. 5192-5197, 1985; R. Kripal, D. Yadav, C. Rudowicz and P. Gnutek, ‘Alternative zero-field splitting(ZFS) parameter sets and standardization for Mn2+ ions in various hosts exhibiting orthorhombic site symmetry”, J. Phys. Chem. Solids, Vol. 70, pp. 827-833, 2009.
[31] C. Rudowicz, Y. Y. Zhao, W. L. Yu, “Crystal field analysis for 3d4 and 3d6 ions with an orbital singlet ground state at orthorhombic and tetragonal symmetry sites”, J. Phys. Chem. Solids, Vol. 53, pp. 1227-1236, 1992.
[32] W. L. Yu, M. G. Zhao, “Zero-field splitting and the d–d transitions of Mn2+ on Ca(II) sites in Ca5(PO4)3F”, Phys. Stat. Sol. (b), Vol. 140, pp. 203-212, 1987.
[33] C. K. Jorgensen, Modern Aspects of Ligand Field Theory, North-Holland, Amsterdam, p 305, 1971.
[34] M. G. Zhao, M. L. Du, G. Y. Sen, “A ?-?-? correlation ligand-field model for the Ni2+-6X- cluster”, J. Phys. C: Solid State Phys., Vol. 20, pp. 5557-5572, 1987; Q. Wei, “Investigations of the Optical and EPR Spectra for Cr3+ Ions in Diammonium Hexaaqua Magnesium Sulphate Single Crystal”, Acta Phys. Polon. A,Vol.118, pp. 670-672, 2010.
[35] R. Kripal, H. Govind, S. K. Gupta, M. Arora, “EPR and optical absorption study of Mn2+-doped zinc ammonium phosphate hexahydrate single crystals”, Physica B, Vol. 392, pp. 92-98, 2007.
[36] D. J. NEWMAN, “THEORY OF LANTHANIDE CRYSTAL FIELDS”, ADV. PHYS., VOL. 20, PP. 197-256, 1971.
[37] Y. Y. Yeung, D. J. Newman, “Superposition-model analyses for the Cr3+ 4A2 ground state”, Phys. Rev. B, Vol. 34, pp. 2258-2265, 1986.
[38] D. J. Newman, D. C. Pryce, and W. A. Runciman, “Superposition model analysis of the near infrared spectrum of Fe (super 2+) in pyrope-almandine garnets”, Am. Miner., Vol. 63, pp. 1278-1281, 1978.
[39] G. Y. Shen, M. G. Zhao, “Analysis of the spectrum of Fe2+ in Fe-pyrope garnets”, Phys. Rev. B, Vol. 30, Issue 7, pp. 3691-3703, 1984.
[40] D. J. Newman and B. Ng, “The Superposition model of crystal fields”, Rep. Prog. Phys., Vol. 52, pp. 699-763, 1989.
[41] M. Andrut, M. Wildner, C. Rudowicz, Optical Absorption Spectroscopy in Geosciences, Part II: Quantitative Aspects of Crystal Fields, Spectroscopic Methods in Mineralogy (EMU Notes in Mineralogy, Vol. 6, Ed. A. Beran and E. Libowitzky, Eötvös University Press, Budapest, Chapter 4, pp.145-188, 2004.
[42] C. Rudowicz, “Transformation relations for the conventional Okq and normalised O`kq Stevens operator equivalents with k=1 to 6 and –k ? q ? k”, J. Phys. C: Solid State Phys., Vol. 18, pp. 1415-1430, 1985; “On the derivation of the superposition-model formulae using the transformation relations for the Stevens operators”, J. Phys. C: Solid State Phys., Vol. 20, pp. 6033- 6037, 1987.
[43] M. Karbowiak, C. Rudowicz, P. Gnutek, “Energy levels and crystal-field parameters for Pr3+ and Nd3+ ions in rare earth(RE) tellurium oxides RE2Te4O11 revisited – Ascent/descent in symmetry method applied for triclinic site symmetry”, Opt. Mater., Vol. 33, pp. 1147-1161, 2011; doi: 10.1016/j.optmat.2011.01.027.
[44] K. T. Han, J. Kim, ”A theoretical analysis of zero-field splitting of Mn2+in sodium nitrite,” J. Phys.: Condens. Matter, Vol. 8, Number 33, pp. 6759-6767, 1996.
[45] P. Gnutek, Z. Y. Yang, C. Rudowicz, ”Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+–OI2? defect center in KTaO3 crystal”, J. Phys.: Condens. Matter, Vol. 21, pp. 455402-455412, 2009.
[46] V. V. Laguta, M. D. Glinchuk, I. P. Bykov, J. Rosa, L. Jastrabik, M. Savinov, Z. Trybula, “Paramagnetic dipole centers in KTaO3: Electron-spin-resonance and dielectric spectroscopy study”, Phys. Rev. B, Vol. 61, Issue 6, pp. 3897-3904, 2000.
[47] C. Rudowicz, Y. Y. Zhou, „Microscopic study of Cr2+ ion in the quasi-2D mixed system Rb2MnxCr1?xCl4”, J. Magn. Magn. Mater., Vol. 111, Issues 1-2, pp. 153-163, 1992.
[48] M. Acikgöz, P. Gnutek, C. Rudowicz, “Modeling zero-field splitting parameters for dopant Mn2+ and Fe3+ ions in anatase TiO2 crystal using superposition model analysis”, Chem. Phys. Letts., Vol. 524, pp. 49-55, 2012.
[49] Y. Y. Yeung, C. Rudowicz, “Crystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sites”, J. Comput. Phys.,Vol. 109, pp. 150-152, 1993.Citation
Ram Kripal , "Theoretical Study of Zero Field Splitting Parameters of Mn2+ doped Ammonium Catena - Di-?-Chromatodiammine Cadmium (II) Crystal at Orthorhombic Symmetry Site," International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.4, pp.23-28, 2022 -
Open Access Article
B. Samaila
Research Paper | Journal-Paper (IJSRPAS)
Vol.10 , Issue.4 , pp.29-32, Aug-2022
Abstract
Patient dose measurement is an important tool for dose optimization and patient protection in diagnostic radiology. It is to safeguard both the medical personnel and patient from undesirable effect of radiation. The present study examines the entrance surface Dose (ESD) and effective dose of 101 patients undergoing routine lumbar spine and Lumbosacral joint radiographic examinations in two health care centers consisting two radiological units in Kebbi State north-western part of Nigeria. Patient dose were evaluated using an indirect method [CalDose _X 5.0 software] based on exposure factors. The mean ESD of the results were found to be 4. 83 mGy and 7.46 mGy for lumbar spine respectively for SMH and FMC, while mean ESD for Lumbosacral joints were 5.16 mGy and 8.84 mGy respectively for SMH and FMC. Similarly, the mean estimated ED was 0.47mSv and 0.74 mSv for lumbar spine while 0.39 mSv and 0.55mSv for Lumbosacral joint respectively for SMH and FMC. The results obtained in this study were higher than the doses reported in NRPB 2000, Iran 2015 and ARPNSA, 201 but lower than that of Brazil 2008, and Italy 2005 in some health care centers. Same applied to ED the results obtained were greatly higher than those obtained in literatures. The higher doses obtained can be attributed to the use of higher tube load (mAs) during examinations, which shows lack of optimization of exposure settings.Key-Words / Index Term
Adults, Radiation dose, Entrance skin dose, and effective doseReferences
[1] S. Abdelmonei “Measurement of Patient Radiation Doses during Certain Diagnostic Radiography Procedures”. British Journal of Medicine & Medical Research 12(5): 1-8 2016.
[2] ICRP, “Basic Anatomical and Physiological Data for Use in Radiological Protection”. Reference Values ICRP Publication 89 (Oxford: Pergamon), 2002.
[3] International Commission on Radiological Protection [ICRP], “Radiological Protection and safety in medicine”. ICRP publication 73, a web module produced by committee 3 of the ICRP 1996.
[4] International Atomic Energy Agency [IAEA], “Safety support series No.115: International Basic Safety Standards for protection against ionizing radiation and the safety of radiation sources” 1996.
[5] B. Samaila, A. Bello, M. Abbas and B. Maidamma, “Assessment of Radiation Dose for Adult Patients during Anterior Posterior Pelvic X-ray Examinations”. International Journal of Advances in Engineering and Management (IJAEM), Volume 3, Issue 9, pp: 1061-1065, 2021a
[6] B. Samaila, and A. Bello “Determination of Radiation Doses Received During Knee Joint X-ray Procedures in Kebbi State, Nigeria”. SPR, Volume 2, issue 1, pp: 506-510, 2021b
[7] M. Gholami, A. Maziar, H.R. Khosravi, F. Ebrahimzadeh, and S. Mayahi, “Diagnostic reference levels (DRLs) for routine X-ray examinations in Lorestan province, Iran” International Journal of Radiation Research, January. 13(1), pp: 85-90, 2015.
[8] Australian Radiation Protection and Nuclear Safety Agency, “Entrance Skin Doses”. https://radiopaedia.org/articles/entrance-skin-dose, retrieved on 12th Sept, 2020.
[9] National Radiological Protection Board (NRPB), “Radiation Exposure of the UK population”. Report R263, 2000.
[10] O.A. Osibote, and A.CP. Azevedo, “Estimation of adult patient doses for common diagnostic X-ray examinations in Rio de Janeiro, Brazil”. Physica Medica, 2(4), pp: 21-28, 2008.
[11] Gaetano, C., Laura, P., and Carlo, B. (2005). Local Diagnostic Reference Levels In standard X-ray examinations. Radiation Protection Dosimetry 113 (1), pp: 54–63.
[12] H.M. Kharita, M.S. Khedr, and K.M. Wannus, “Survey of patients doses from conventional diagnostic radiographic examination in Syria”. Available at www.radher.jp retrieved on 22nd Nov 2020,
[13] P.R. Durga, and T.D. Seife, “Radiation Exposure of Patients Undergoing Common Diagnostic X-Ray Examinations in Some Major Hospitals in Visakhapatnam, India”. Journal of Medical Diagnostic Methods, 1(1), pp: 101-119, 2012.
[14] O.Kofi, W.G. Samuel, A. Emmanuel, A.A. Adriana, and O.D. Emmanuel, “Estimation of adult patient doses for selected X-ray diagnostic examinations”. Journal of Radiation Research and Applied Sciences, 7(1), pp: 459 – 462, 2014.
[15] K.O. Ernest, and D.Johnson, “A Survey of Organ Equivalent and Effective Doses from Diagnostic Radiology Procedures”. ISRN Radiology, 7(2) pp: 1- 9, 2013.Citation
B. Samaila, "An Indirect Radiation Dose Assessment of Adult Patients Undergoing Lumbosacral Joints and Lumbar Spine Radiological X-Ray Procedures," International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.4, pp.29-32, 2022
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.