Volume-10 , Issue-6 , Dec 2022, ISSN 2348-3423 (Online) Go Back
-
Open Access Article
Anisotropic String Cosmological Model for Perfect Fluid Distribution in f(T) Gravity
Kalpana Pawar, A.K. Dabre, N.T. Katre
Research Paper | Journal-Paper (IJSRPAS)
Vol.10 , Issue.6 , pp.1-7, Dec-2022
Abstract
The present study deals with a spatially homogeneous and anisotropic Bianchi type VI0 space-time in the presence of string of clouds and perfect fluid distribution within the context of gravity. The analytic relation and the hybrid exponential form of the average scale factor have been considered to obtain the exact solutions of highly non-linear field equations. Some physical and kinematical parameters of the constructed model along with the behavior of the equation of state parameter for string fluid are discussed and presented graphically.Key-Words / Index Term
Bianchi-type VI0 space-time, Cosmic String, Perfect Fluid, Gravity.References
[1] G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, “String-inspired Gauss-Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy,” Phys. Rev. D - Part. Fields, Gravit. Cosmol., vol. 75, no. 8, Apr. 2007.
[2] S. Nojiri, S. D. Odintsov, and M. Sami, “Dark energy cosmology from higher-order, string-inspired gravity, and its reconstruction,” vol. 74, no. 4, p. 046004, Aug. 2006.
[3] P.-M. Zhang, Y.-S. Duan, and L.-M. Cao, “The Order Parameter Field For Cosmic String, Inflation And Dark Energy,” Mod. Phys. Lett. A, vol. 18, no. 36, pp. 2587–2597, Nov. 2003.
[4] P. F. Gonzalez-Diaz and J. A. Jimenez Madrid, “Wiggly Cosmic Strings Accrete Dark Energy,” Int. J. Mod. Phys. D, vol. 15, no. 04, pp. 603–613, Apr. 2006.
[5] Y. Cui and D. E. Morrissey, “Nonthermal dark matter from cosmic strings,” Phys. Rev. D, vol. 79, no. 8, p. 083532, Apr. 2009.
[6] H. Bernardo, R. Brandenberger, and G. Franzmann, “String cosmology backgrounds from classical string geometry,” Phys. Rev. D, vol. 103, no. 4, p. 43540, 2021.
[7] T. Kibble, “Topology of cosmic domains and strings,” J. Phys. A Gen. Phys., vol. 9, no. 8, pp. 1387–1398, 1976.
[8] N. Turok, “The evolution of cosmic density perturbations around grand unified strings,” Phys. Lett. B, vol. 126, no. 6, pp. 437–440, Jul. 1983.
[9] P. S. Letelier, “Fluids of strings in general relativity,” Nuovo Cim. B, vol. 63, no. 2, pp. 519–528, 1981.
[10] P. S. Letelier, “String cosmologies,” Phys. Rev. D, vol. 28, no. 10, pp. 2414–2419, Nov. 1983.
[11] J. Stachel, “Thickening the string. I. The string perfect dust,” Phys. Rev. D, vol. 21, no. 8, pp. 2171–2181, 1980.
[12] A. Vilenkin, “Cosmic strings and domain walls,” Phys. Rep., vol. 121, no. 5, pp. 263–315, 1985.
[13] B. Hartmann and F. Arbabzadah, “Cosmic strings interacting with dark strings,” J. High Energy Phys., vol. 2009, no. 07, pp. 068–068, Jul. 2009.
[14] T. Vinutha, V. U. M. Rao, and M. Mengesha, “Anisotropic dark energy cosmological model with cosmic strings,” Can. J. Phys., vol. 99, no. 3, pp. 168–175, Mar. 2021.
[15] R. Bali and D. K. Singh, “Bianchi type-V bulk viscous fluid string dust cosmological model in general relativity,” Astrophys. Space Sci., vol. 300, no. 4, pp. 387–394, 2005.
[16] S. P. Hatkar, S. V. Gore, and S. D. Katore, “Kasner type magnetized string cosmological models in F(R, T) gravity,” Serbian Astron. J., vol. 197, no. 197, pp. 1–11, 2018.
[17] T. Vinutha, V. U. M. Rao, B. Getaneh, and M. Mengesha, “Dark energy cosmological models with cosmic string,” Astrophys. Space Sci., vol. 363, no. 9, p. 188, Sep. 2018.
[18] D. R. K. Reddy, R. L. Naidu, K. Dasu Naidu, and T. Ram Prasad, “Kaluza-Klein universe with cosmic strings and bulk viscosity in f(R,T) gravity,” Astrophys. Space Sci., vol. 346, no. 1, pp. 261–265, 2013.
[19] P. Berglund, T. Hübsch, and D. Mini?, “Dark energy and string theory,” Phys. Lett. B, vol. 798, p. 134950, Nov. 2019.
[20] M. Kiran and D. R. K. Reddy, “Non-existence of Bianchi type-III bulk viscous string cosmological model in f(R,T) gravity,” Astrophys. Space Sci., vol. 346, no. 2, pp. 521–524, Aug. 2013.
[21] B. Mishra, S. Tarai, and S. K. Tripathy, “Anisotropic cosmological reconstruction in f (R, T) gravity,” Mod. Phys. Lett. A, vol. 33, no. 29, 2018.
[22] R. Bali and Anjali, “Bianchi type I magnetized string cosmological model in general relativity,” Astrophys. Space Sci., vol. 302, no. 1–4, pp. 201–205, 2006.
[23] R. Bali and U. K. Pareek, “Bianchi Type I string dust cosmological model with magnetic field in general relativity,” Astrophys. Space Sci., vol. 312, no. 3–4, pp. 305–310, 2007.
[24] R. Bali and A. Pradhan, “Bianchi type-III string cosmological models with time dependent bulk viscosity,” Chinese Phys. Lett., vol. 24, no. 2, pp. 585–588, 2007.
[25] R. Ferraro, “f(R) and f(T) theories of modified gravity,” AIP Conf. Proc., vol. 1471, no. 2012, pp. 103–110, 2012.
[26] C. G. Böhmer, A. Mussa, and N. Tamanini, “Existence of relativistic stars in f(T) gravity,” Class. Quantum Gravity, vol. 28, no. 24, Dec. 2011.
[27] A. Moreira, J. Silva, D. Veras, and C. A. S. Almeida, “Thick string-like braneworlds in f(T) gravity,” Int. J. Mod. Phys. D, vol. 30, no. 07, p. 2150047, May 2021.
[28] V. R. Chirde, S. P. Hatkar, and S. D. Katore, “Bianchi type I cosmological model with perfect fluid and string in f(T) theory of gravitation,” Int. J. Mod. Phys. D, vol. 29, no. 08, p. 2050054, Jun. 2020.
[29] N. P. Gaikwad, M. S. Borkar, and S. S. Charjan, “Bianchi type-I massive string magnetized barotropic perfect fluid cosmological model in the bimetric theory of gravitation,” Chinese Phys. Lett., vol. 28, no. 8, 2011.
[30] A. Pradhan, H. Amirhashchi, and H. Zainuddin, “Exact solution of perfect fluid massive string cosmology in Bianchi type III space-time with decaying vacuum energy density ?,” Astrophys. Space Sci., vol. 331, no. 2, pp. 679–687, Feb. 2011.
[31] S. Rani, J. K. Singh, and N. K. Sharma, “Bianchi Type-III Magnetized String Cosmological Models for Perfect Fluid Distribution in f (R,T) Gravity,” Int. J. Theor. Phys., vol. 54, no. 5, pp. 1698–1710, May 2015.
[32] R. Bali and U. K. Pareek, “Bianchi Type III magnetized massive string cosmological model for perfect fluid distribution in general relativity,” Astrophys. Space Sci., vol. 318, no. 3–4, pp. 237–242, Dec. 2008.
[33] P. S. Letelier, “Clouds of strings in general relativity,” Phys. Rev. D, vol. 20, no. 6, pp. 1294–1302, Sep. 1979.
[34] J. Baro and K. P. Singh, “Higher Dimensional Bianchi Type-Iii String Universe With Bulk Viscous Fluid And Constant Deceleration Parameter,” Adv. Math. Sci. J., vol. 9, no. 10, pp. 8779–8787, Oct. 2020.
[35] A. Dixit, R. Zia, and A. Pradhan, “Anisotropic bulk viscous string cosmological models of the Universe under a time-dependent deceleration parameter,” Pramana, vol. 94, no. 1, p. 25, Dec. 2020.
[36] K. D. Krori, T. Chaudhury, C. R. Mahanta, and A. Mazumdar, “Some exact solutions in string cosmology,” Gen. Relativ. Gravit., vol. 22, no. 2, pp. 123–130, Feb. 1990.Citation
Kalpana Pawar, A.K. Dabre, N.T. Katre, "Anisotropic String Cosmological Model for Perfect Fluid Distribution in f(T) Gravity," International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.6, pp.1-7, 2022 -
Open Access Article
Bulk Viscous String Cosmological Model with Constant Deceleration Parameter in Teleparallel Gravity
Kalpana Pawar, A.K. Dabre
Research Paper | Journal-Paper (IJSRPAS)
Vol.10 , Issue.6 , pp.8-16, Dec-2022
Abstract
In this article, we have studied the Bianchi-type V cosmological models which are spatially homogeneous and anisotropic in presence of bulk viscous fluid coupled with one-dimensional cosmic string having the constant deceleration parameter. We have obtained the exact solutions of highly non-linear field equations considering linear gravity, the equation of state, and the spatial law of variation for Hubble’s parameter. Some physical and kinematical properties of the constructed models have been discussed and presented graphically and it is interesting to note that the resultant models are in good agreement with recent observations.Key-Words / Index Term
Bianchi-type V space-time, Bulk Viscous Fluid, Cosmic String, Teleparallel Gravity.References
[1] R. A. Knop et al., “New Constraints on ? M , ? ? , and w from an Independent Set of 11 High?Redshift Supernovae Observed with the Hubble Space Telescope,” Astrophys. J., vol. 598, no. 1, pp. 102–137, Nov. 2003.
[2] A. Clocchiatti et al., “ Hubble Space Telescope and Ground?based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications ,” Astrophys. J., vol. 642, no. 1, pp. 1–21, 2006.
[3] K. Krisciunas et al., “Hubble Space Telescope Observations of Nine High-Redshift Essence Supernovae,” Astron. J., vol. 130, no. 6, pp. 2453–2472, 2005.
[4] S. Perlmutter et al., “Measurements of ? and ? from 42 High?Redshift Supernovae,” Astrophys. J., vol. 517, no. 2, pp. 565–586, Jun. 1999.
[5] A. G. Riess et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J., vol. 116, no. 3, pp. 1009–1038, Sep. 1998.
[6] A. G. Riess et al., “Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope?: Evidence for Past Deceleration and Constraints on Dark Energy Evolution,” Astrophys. J., vol. 607, no. 2, pp. 665–687, Jun. 2004.
[7] B. P. Schmidt et al., “The High?Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae,” Astrophys. J., vol. 507, no. 1, pp. 46–63, Nov. 1998.
[8] S. Nobili et al., “Restframe I-band Hubble diagram for type la supernovae up to redshift z ? 0.5,” Astron. Astrophys., vol. 437, no. 3, pp. 789–804, 2005.
[9] R. Ferraro and F. Fiorini, “Modified teleparallel gravity: Inflation without an inflaton,” Phys. Rev. D - Part. Fields, Gravit. Cosmol., vol. 75, no. 8, pp. 1–5, Apr. 2007.
[10] G. R. Bengochea and R. Ferraro, “Dark torsion as the cosmic speed-up,” Phys. Rev. D, vol. 79, no. 12, p. 124019, Jun. 2009.
[11] E. V. Linder, “Einstein’s other gravity and the acceleration of the Universe,” Phys. Rev. D, vol. 81, no. 12, p. 127301, Jun. 2010.
[12] S.-H. Chen, J. B. Dent, S. Dutta, and E. N. Saridakis, “Cosmological perturbations in f(T) gravity,” Phys. Rev. D, vol. 83, no. 2, p. 023508, Jan. 2011.
[13] J. B. Dent, S. Dutta, and E. N. Saridakis, “f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis,” J. Cosmol. Astropart. Phys., vol. 2011, no. 01, pp. 009–009, Jan. 2011.
[14] R. Zheng and Q.-G. Huang, “Growth factor in f(T) gravity,” J. Cosmol. Astropart. Phys., vol. 2011, no. 03, pp. 002–002, Mar. 2011.
[15] K. Bamba, R. Myrzakulov, S. Nojiri, and S. D. Odintsov, “Reconstruction of f(T) gravity: Rip cosmology, finite-time future singularities, and thermodynamics,” Phys. Rev. D, vol. 85, no. 10, p. 104036, May 2012.
[16] M. Hamani Daouda, M. E. Rodrigues, and M. J. S. Houndjo, “Reconstruction of f(T) gravity according to holographic dark energy,” Eur. Phys. J. C, vol. 72, no. 2, p. 1893, Feb. 2012.
[17] W. El Hanafy and G. G. L. Nashed, “Reconstruction of f(T) -gravity in the absence of matter,” Astrophys. Space Sci., vol. 361, no. 6, 2016.
[18] Y.-F. Cai, M. Khurshudyan, and E. N. Saridakis, “ Model-independent Reconstruction of f ( T ) Gravity from Gaussian Processes ,” Astrophys. J., vol. 888, no. 2, p. 62, 2020.
[19] M. V. Santhi, Y. Sobhanbabu, and B. J. M. Rao, “Bianchi type V I h Bulk-Viscous String Cosmological Model in f(R) Gravity,” J. Phys. Conf. Ser., vol. 1344, no. 1, p. 012038, Oct. 2019.
[20] D. R. K. Reddy, S. Anitha, and S. Umadevi, “Kantowski-Sachs bulk viscous string cosmological model in f(R,T) gravity,” Eur. Phys. J. Plus, vol. 129, no. 5, p. 96, May 2014.
[21] E. A. Hegazy, “Bulk viscous Bianchi type I cosmological model in Lyra geometry and in the general theory of relativity,” Astrophys. Space Sci., vol. 365, no. 7, pp. 33–44, 2020.
[22] R. L. Naidu, D. R. K. Reddy, T. Ramprasad, and K. V. Ramana, “Bianchi type-V bulk viscous string cosmological model in f(R,T) gravity,” Astrophys. Space Sci., vol. 348, no. 1, pp. 247–252, Nov. 2013.
[23] R. L. Naidu, K. Dasu Naidu, K. Shobhan Babu, and D. R. K. Reddy, “A five dimensional Kaluza-Klein bulk viscous string cosmological model in Brans-Dicke scalar-tensor theory of gravitation,” Astrophys. Space Sci., vol. 347, no. 1, pp. 197–201, Sep. 2013.
[24] D. R. K. Reddy, R. L. Naidu, K. Dasu Naidu, and T. Ram Prasad, “Kaluza-Klein universe with cosmic strings and bulk viscosity in f(R,T) gravity,” Astrophys. Space Sci., vol. 346, no. 1, pp. 261–265, 2013.
[25] T. Vidyasagar, R. L. Naidu, R. Bhuvana Vijaya, and D. R. K. Reddy, “Bianchi type-VI0 bulk viscous string cosmological model in Brans-Dicke scalar-tensor theory of gravitation,” Eur. Phys. J. Plus, vol. 129, no. 2, p. 36, Feb. 2014.
[26] D. R. K. Reddy, R. L. Naidu, K. Dasu Naidu, and T. Ram Prasad, “LRS Bianchi type-II universe with cosmic strings and bulk viscosity in a modified theory of gravity,” Astrophys. Space Sci., vol. 346, no. 1, pp. 219–223, Jul. 2013.
[27] D. R. K. Reddy, R. L. Naidu, T. Ramprasd, and K. V. Ramana, “LRS Bianchi type-II bulk viscous cosmic string model in a scale covariant theory of gravitation,” Astrophys. Space Sci., vol. 348, no. 1, pp. 241–245, Nov. 2013.
[28] R. K. Mishra and H. Dua, “Bulk viscous string cosmological models in Saez-Ballester theory of gravity,” Astrophys. Space Sci., vol. 364, no. 11, p. 195, Nov. 2019.
[29] A. K. Sethi, B. Nayak, and R. Patra, “String Cosmological Models with Bulk Viscosity in Lyra Geometry,” J. Phys. Conf. Ser., vol. 1344, no. 1, p. 012001, Oct. 2019.
[30] M. R. Mollah and K. P. Singh, “Behaviour of viscous fluid in string cosmological models in the framework of Lyra geometry,” New Astron., vol. 88, p. 101611, Oct. 2021.
[31] S. R. Bhoyar, V. R. Chirde, and S. H. Shekh, “Accelerating Universe with Viscous Cosmic String in Quadratic Form of Teleparallel Gravity,” J. Sci. Res., vol. 11, no. 3, pp. 249–262, Sep. 2019.
[32] R. Bali and S. Dave, “Bianchi Type-III String Cosmological Model with Bulk Viscous Fluid in General Relativity,” Astrophys. Space Sci., vol. 282, no. 2, pp. 461–466, 2002.
[33] A. Dixit, R. Zia, and A. Pradhan, “Anisotropic bulk viscous string cosmological models of the Universe under a time-dependent deceleration parameter,” Pramana, vol. 94, no. 1, p. 25, Dec. 2020.
[34] P. K. Sahoo, A. Nath, and S. K. Sahu, “Bianchi Type-III String Cosmological Model with Bulk Viscous Fluid in Lyra Geometry,” Iran. J. Sci. Technol. Trans. A Sci., vol. 41, no. 1, pp. 243–248, Mar. 2017.
[35] M. Vijaya Santhi, V. U. M. Rao, and Y. Aditya, “Bianchi Type- I Bulk Viscous String Model in f(R) Gravity,” J. Dyn. Syst. Geom. Theor., vol. 17, no. 1, pp. 23–38, Jan. 2019.
[36] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, “Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution,” Phys. Rep., vol. 692, pp. 1–104, Jun. 2017.
[37] L. Freidel, R. G. Leigh, and D. Minic, “Quantum gravity, dynamical phase-space and string theory,” Int. J. Mod. Phys. D, vol. 23, no. 12, p. 1442006, Oct. 2014.
[38] B. Mishra, S. K. Tripathy, and P. P. Ray, “Bianchi-V string cosmological model with dark energy anisotropy,” Astrophys. Space Sci., vol. 363, no. 5, p. 86, May 2018.
[39] T. Vinutha, V. U. M. Rao, G. Bekele, and K. S. Kavya, “Viscous string anisotropic cosmological model in scalar–tensor theory,” Indian J. Phys., vol. 95, no. 9, pp. 1933–1940, Sep. 2021.
[40] F. Darabi, M. Golmohammadi, and A. Rezaei-Aghdam, “FRW string cosmological solutions via Hojman symmetry,” Int. J. Geom. Methods Mod. Phys., vol. 17, no. 12, p. 2050175, Oct. 2020.
[41] V. R. Chirde, S. P. Hatkar, and S. D. Katore, “Bianchi type I cosmological model with perfect fluid and string in f(T) theory of gravitation,” Int. J. Mod. Phys. D, vol. 29, no. 08, p. 2050054, Jun. 2020.
[42] D. D. Pawar, G. G. Bhuttampalle, and P. K. Agrawal, “Kaluza–Klein string cosmological model in f(R, T) theory of gravity,” New Astron., vol. 65, pp. 1–6, Nov. 2018.
[43] R. Zia, D. C. Maurya, and A. Pradhan, “Transit dark energy string cosmological models with perfect fluid in F (R, T) -gravity,” Int. J. Geom. Methods Mod. Phys., vol. 15, no. 10, p. 1850168, Oct. 2018.
[44] M. Sharif and Q. Ama-Tul-Mughani, “Gravitational decoupled solutions of axial string cosmology,” Mod. Phys. Lett. A, vol. 35, no. 12, p. 2050091, Apr. 2020.
[45] A. Kumar Yadav, “Bianchi-V string cosmology with power law expansion in f (R, T) gravity,” Eur. Phys. J. Plus, vol. 129, no. 9, 2014.
[46] T. Vinutha, V. U. M. Rao, and M. Mengesha, “Anisotropic dark energy cosmological model with cosmic strings,” Can. J. Phys., vol. 99, no. 3, pp. 168–175, Mar. 2021.
[47] A. R. P. Moreira, J. E. G. Silva, D. F. S. Veras, and C. A. S. Almeida, “Thick string-like braneworlds in f(T) gravity,” Int. J. Mod. Phys. D, vol. 30, no. 07, p. 2150047, May 2021.
[48] R. Consiglio, O. Sazhina, G. Longo, M. Sazhin, and F. Pezzella, “On the Number of Cosmic Strings,” Dec. 2011.
[49] P. S. Letelier, “String cosmologies,” Phys. Rev. D, vol. 28, no. 10, pp. 2414–2419, Nov. 1983.
[50] H. Bernardo, R. Brandenberger, and G. Franzmann, “String cosmology backgrounds from classical string geometry,” Phys. Rev. D, vol. 103, no. 4, p. 43540, 2021.
[51] P. Berglund, T. Hübsch, and D. Mini?, “Dark energy and string theory,” Phys. Lett. B, vol. 798, p. 134950, Nov. 2019.
[52] P. S. Letelier, “Fluids of strings in general relativity,” Nuovo Cim. B, vol. 63, no. 2, pp. 519–528, 1981.
[53] P. R. Dhongale, M. S. Borkar, S. S. Charjan, “Bianchi Type I Bulk Viscous Fluid String Dust Magnetized Cosmological Model with ?-Term in Bimetric Theory of Gravitation,” Int. J. Sci. Res. Math. Stat. Sci., vol. 6, no. 3, pp. 35–40, 2019.
[54] S. D. Katore, S. P. Hatkar, and S. V. Gore, “Cosmology of string bulk viscosity in f(G) theory of gravitation,” Int. J. Geom. Methods Mod. Phys., vol. 15, no. 07, p. 1850116, Jul. 2018.
[55] K. Jain, D. Chhajed, and A. Tyagi, “Magnetized LRS Bianchi Type-I Massive String Cosmological Model for Perfect Fluid Distribution with Cosmological Term ?,” Int. J. Sci. Res. Phys. Appl. Sci., vol. 7, no. 3, pp. 167–172, Jun. 2019.
[56] B. P. Brahma and M. Dewri, “Bulk Viscous Bianchi Type-V Cosmological Model in f(R, T) Theory of Gravity,” Front. Astron. Sp. Sci., vol. 9, Feb. 2022,.
[57] D. R. K. Reddy, C. Purnachandra Rao, T. Vidyasagar, and R. Bhuvana Vijaya, “Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation,” Adv. High Energy Phys., vol. 2013, pp. 1–5, 2013.
[58] M. S. Berman, “A special law of variation for Hubble’s parameter,” Nuovo Cim. B Ser. 11, vol. 74, no. 2, pp. 182–186, Apr. 1983.
[59] P. S. Letelier, “Clouds of strings in general relativity,” Phys. Rev. D, vol. 20, no. 6, pp. 1294–1302, Sep. 1979.
[60] J. Baro and K. P. Singh, “Higher Dimensional Bianchi Type-Iii String Universe With Bulk Viscous Fluid And Constant Deceleration Parameter,” Adv. Math. Sci. J., vol. 9, no. 10, pp. 8779–8787, Oct. 2020.
[61] K. D. Krori, T. Chaudhury, C. R. Mahanta, and A. Mazumdar, “Some exact solutions in string cosmology,” Gen. Relativ. Gravit., vol. 22, no. 2, pp. 123–130, Feb. 1990.Citation
Kalpana Pawar, A.K. Dabre, "Bulk Viscous String Cosmological Model with Constant Deceleration Parameter in Teleparallel Gravity," International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.6, pp.8-16, 2022 -
Open Access Article
Paul Akinwande Atepa, Oluwagbenga John Ogunbiyi, Oludayo Oluseyi Adekanye, David Dele Abajingin
Research Paper | Journal-Paper (IJSRPAS)
Vol.10 , Issue.6 , pp.17-25, Dec-2022
Abstract
The biochemical and hematological effects of rats fed with vegetables planted on fertilized soil after exposure to sub-acute oscillating magnetic field was investigated. Five different types of soil were sampled along with three types of commonly eaten vegetable plants nursed on two types of fertilizers. Each of the vegetable plants was planted in five local pots, each containing a sampled soil. Other sets of local pots matching this description were fertilized differently with Telfaria occidentalis (Fluted pumpkin), Amaranthus hybridus (Green amaranth) and Basella alba (Malabar spinach) respectively. The control group consists of 3 pots of vegetable plants without fertilizer while the experimental group consists of 6 pots of plants planted with fertilizer. After the vegetables have been matured, they were harvested, dried and grinded into powdered form. The elemental levels in both the soil and vegetables were measured using the Atomic Absorption Spectrophotometer (AAS). Three groups of five rats each were formed from fifteen selected rats. Each group was fed differently with the vegetables harvested from experimental groups, and later exposed to a sub-acute oscillating magnetic field for about 30 days. The animals were sacrificed and the liver was excised for biochemical and haematological analysis. The results show that exposure of rats to magnetic field caused oxidative stress. The accumulated level of heavy metals in the vegetable did not cause significant stress probably due to the presence of bioactive phytochemicals. Data obtained suggest that some haematological parameters of human could be altered if exposed to either sub-acute oscillating magnetic field or consumption of fertilized vegetables.Key-Words / Index Term
biochemical, haematological, vegetables, fertilizer, oscillating, magnetic fieldReferences
[1] T.G. Ülger, A.N. Songur, O. Ç?rak, F.P. Çak?ro?lu, “Role of Vegetables in Human Nutrition and Disease Prevention. In Book chapter: Vegetables - Importance of Quality Vegetables to Human,” Health2018.
[2] I.B. Adeoye, “Factors Affecting Efficiency of Vegetable Production in Nigeria: A Review”. In Book chapter: Agricultural Economics, 2020.
[3] Nutrient Content of Fertilizer Materials Alabama Cooperative Extension System 2008.
[4] K.A. Yusuf, S.O. Oluwole, “Heavy Metal (Cu, Zn, Pb) Contamination of Vegetables in Urban City: A Case Study in Lagos” Research Journal of Environmental Sciences, Vol.3,pp.292-298, 2009.
[5] E. Osma, M. Serin, Z. Leblebici, A. Aksoy, “Assessment of Heavy Metal Accumulations (Cd, Cr, Cu, Ni, Pb, and Zn) in Vegetables and Soils,” Pol. J. Environ. Stud., Vol.22, Issue.5, pp.1449–1455, 2013.
[6] J.E. Emurotu, P.C. Onianwa, “Bioaccumulation of heavy metals in soil and selected food crops cultivated in Kogi State, north central Nigeria,” Environmental Systems Research, Vol.6, Article No.21, 2017.
[7] K. Patrick-Iwuanyanwu, Nganwuchu C. Chioma, “Evaluation of Heavy Metals Content and Human Health Risk Assessment via Consumption of Vegetables from Selected Markets in Bayelsa State, Nigeria,” Biochem Anal Biochem, Vol.6, Issue.3, 6pages, 2017.
[8] V.T. Sanyaolu,A.A.A. Sanyaolu,E. Fadele, “Spatial variation in Heavy Metal residue in Corchorusolitoriouscultivated along a Major highway in Ikorodu- Lagos, Nigeria,”J. Appl. Sci. Environ. Manage., Vol.15, Issue.2, pp.283 – 287, 2011.
[9] Suruchi,K. Pankaj, “Assessment of Heavy Metal Contamination in Different Vegetables Grown in and Around Urban Areas,” Research Journal of Environmental Toxicology, Vol.5, pp.162-179, 2011.
[10] D.D. Abajingin, O.E. Ekun, “Haematological and Biochemical Parameters of Rats Fed with Heavy Metaled Fish after Exposure to a 47mT Oscillating Magnetic Field,” American Journal of Medical Sciences and Medicine, Vol.7, Issue.2, pp.30-35, 2019.
[11] P.R. Day, “Hydrometer Method of Particle Size Analysis,” In: Black, C.A., Ed., Methods of Soil Analysis, Part 1 Agronomy No 9. American Society of Agronomy, Madison, Wisconsin Argon, 562-563, 1965.
[12] M.L. Jackson, “Soil chemical analysis,” Prentice Hall, New York. pp. 263- 268,1962.
[13] R.H. Bray, L.T. Kurtz, “Determination of total, organic, and available forms of phosphorus in soils,” Soil Science, Vol.59, pp.39-45,1945.
[14] J. Murphy, J.P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Analytica Chimia Acta, 27: 31 – 36, 1962.
[15] C.A. Black, “Methods of soil analysis,” Agronomy No 9 Part 2,” America Society of Agronomy Madison, Wisconsin, 1965.
[16] E.O. McLean, “Aluminum. In: Methods of soil anlaysis (ed C.A Black) Agronomy No 9 Part 2,” American Society of Agronomy, pp.978-998, 1965.
[17] Y.K. Soon, S. Abboud, “Cadmium, chromium, lead and nickel In; Soil sampling and methods of soil analysis (eds M.R. Carter),” Canadian Society of Soil Science, pp.101-108, 1993.
[18] International Institute of Tropical Agriculture (IITA) Selected methods for soil and plant analysis. Manual Series No 1. Ibadan, pp:2-50, 70, 1979.
[19] Association of Official Analytical Chemists (AOAC), “Official Methods of Analysis,” 10th Edition, Washington D.C., pp.154-170, 1970.
[20] R. Azmat, S. Haider, “Pb Stress on phytochemistry of seedlings Phaseolusmungo and Lens culinaris,” Asian Journal of Plant Science,Vol.6, Issue.2, pp.332-337, 2007.
[21] J.M.C. Gutteridge, C. Wilkins, “Cancer dependent hydroxyl radical damage to ascorbic acid. Formation of a thiobarbituric acid reactive product,” FEBS Lett137: 327-330, 1982.
[22] H.P. Misra, I. Fridovich, “The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase,” J BiolChem Vol.247, pp.3170-3175, 1972.
[23] G. Cohen, D. Dembiec, J. Marcus, “Measurement of catalase activity in tissue extracts,” Anal Biochem.,Vol.34, pp.30-38, 1970.
[24] R.W. Payne, Gent stat 6.1: Revenue manual VSN International Ltd. Oxford, 2002.
[25] S. Amara, H. Abdelmelek, M.B. Salem, R. Abidi, M. Sakly, “Effects of Static Magnetic Field Exposure on Hematological and Biochemical Parameters in Rats,” Brazilian Archives of Biology and Technology,Vol.49, Issue.6, pp.889-895, 2006.
[26] J. Jolanta, G. Janina, Z. Marek, R. Elzibieta, S. Mariola, K. Marek, “Influence of 7mT static magnetic field and irons ions on apoptosis and necrosis in rat blood lymphocytes,” J. Accup. Health, Vol.43, pp.379-381, 2001.
[27] B.M. Reipert, D. Allan, S. Reipert, T.M. “Dexter, Apoptosis in haemopoieticprogenitor cells exposed to extremely low-frequency magnetic fields,” Life Sci., 61, 1571-1582, 1997.
[28] N. Day, “Exposure to power-frequency magnetic fields and the risk of childhood cancer,” Lancet.,Vol.354, pp.1925-1931, 1999.
[29] A. Lacy-Hulbert, J.C. Metcalfe, R. Hesketh, “Biological responses to electromagnetic fields,” FASEB J., Vol.12, pp.395-420, 1998.
[30] E.E. Hatch, M.S. Linet, R. A. Kleinerman, R.E. Tarone, R.K. Severson, C.T. Hartsock, C. Haines, W.T. Kaune, D. Friedman, L.L. Robison,S. Wacholder, “Association between childhood acute lymphoblastic leukemia and use of electrical appliances during pregnancy and childhood,” Epidemiology, Vol.9, pp.234-245, 1998.
[31] J.C. Teepen, J.A.A.M. van Dijck, “Impact of high electromagnetic field levels on childhood leukemia incidence” International Journal of Cancer,Vol.131,pp.769–778, 2012.
[32] J. Michaelis, J. Schüz, R. Meinert, M. Menger, J-P. Grigat, P. Kaatsch, U. Kaletsch, A. Miesner, A. Stamm, K. Brinkmann, H. Kärner, “Childhood Leukemia and Electromagnetic Fields: Results of a Population-Based Case-Control Study in Germany,” Cancer Causes & Control, Vol.8, Issue.2, pp.167-174, 1997.
[33] A. Baum, M. Mevissen, K. Kamino, “A histological study on alteration in DMBA-induced mammary carcinogenesis in rats with 50 Hz, 100 muT,” magnetic field exposure carcinogenesis.Vol.16. pp.119-125, l995.
[34] M. Mevissen, , M. Kietzmann,W. Loscher, “In vivo exposure of rats to a weak alternating magnetic field increases omithinedecarboxylase activity in the mammary gland by a similar extent as the carcinogen DMBA,” Cancer Lett., Vol.90, pp.207-214, 1995.
[35] B. Kula, J. Grzesik, M. Wardas, R. Kuska, M. Goss, “Effect ofmagnetic field on the activity of hyaluronidase and D-glukuronidase and the level hyaluronic acid and chondroitin sulfates in rat liver,” Ann AcadMed Sil., Vol.24, pp.77-81, 1991.
[36] K. Boguslaw, S. Andrzej, G. Rozalia, P. Danuta, “Effect of Electromagnetic Field on Serum Biochemical Parameters in Steelworkers,” J. Occup Health., Vol.41, pp.177-180, 1999.
[37] O.N. Chemysheva, “Status of the lipid phase of plasma membranes of the heart after repeated exposure to alternate magnetic of 50 Hz frequency,” Kosm Biol. Aviakosm Med., Vol.24, pp.30-31, 1990.
[38] E. Gorczynska, R. Wegrzynowics, “Glucose homeostasis in rats exposed to magnetic fields,” Invest Radiol., Vol.26, pp.1095-1100.1991.
[39] W.B. High, J. Sikora, K. Ugurbil, M. Garwood, “Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats,” Journal of Magnetic Resonance lmaging, Vol.12, pp.122-139, 2000.
[40] C. Marino, F.O. Antonini, B.O. Avella, L. Galloni, P. Scacchi, “50 Hz magnetic field effects on tumoral growth in vivo systems,” In: Annual BEMS Meeting, 7., Boston. Proceedings, Massachusetts: Book. pp.171-172, 1995.
[41] L. Bonhomme-Faive, A. Mace, Y. Bezie, S. Marion, G. Bindoula, A.M. Szekely, N. Frenois, H. Auclair, S. Orbach-Arbouys, E. Bizi, “Alterations of biological parameters in mice chronically exposed to low-frequency (50 Hz) electromagnetic fields,” Life Sci., Vol.62, pp.1271-1280, 1998.
[42] H. Abdelmelek, S. Chater, R. Smirani, A. M`Chirgui, C. Ben Jeddou, M. Ben Salem, M. Sakly, “Effects of 50Hz sinusoidal waveform magnetic field on dehydrated rat body,” Millennium International Workshop on Biological Effects of Electromagetic fields, pp.474-479, 2000.
[43] K. Nagashima, S. Nikkei, M. Tanaka, K. Kanosue, “Neuronal circuitries involved in thermoregulation,” AutonNeurosci., Vol.85, pp.18-25, 2000.
[44] H. Abdelmelek, S. Chater, M. Sakly, “Acute exposure to magnetic field depresses shivering thermogenesis in rat,”Biomedizinische Technik-Band 46-Ergiinzungs band, Vol.2, pp.164-166, 2001.
[45] O.O. Elekofehinti, J.P. Kamdem, A.A. Bolingon, M.L. Athayde, S.R. Lopes, E.P. Waczuk, I.J. Kade, I.G. Adanlawo, J.B.T. Rocha, “African eggplant (Solanumanguivi Lam.) fruit with bioactive polyphenolic compounds exerts in vitro antioxidant properties and inhibits Ca2+-induced mitochondrial swelling,” Asian Pacific Journal of Tropical Biomedicine Vol.3, Issue.10pp.757-766, 2013.
[46] T.G. Nam, “Lipid peroxidation and its toxicological implications,” ToxicolRes.Vol.27, Issue.1,pp.1-6, 2011.Citation
Paul Akinwande Atepa, Oluwagbenga John Ogunbiyi, Oludayo Oluseyi Adekanye, David Dele Abajingin, "Effect of sub-acute oscillating magnetic field exposure of 1.65mT on biochemical and haematological parameters of rats fed with fertilized vegetables," International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.6, pp.17-25, 2022 -
Open Access Article
A comparative study on synthesis techniques of Nanoferrites and its applications
T. Ram Prasad, S.Nagaveni, Anuradha Guptha, B. Ajay Kumar
Research Paper | Journal-Paper (IJSRPAS)
Vol.10 , Issue.6 , pp.26-30, Dec-2022
Abstract
Nano-materials are the particles with the both external and internal structural dimensions declining in the range of 1–100nm. Nanomaterials exhibit unique optical, electrical, mechanical, and quantum properties at this scale in contrast to their molecular-scale behavior. In a thorough introduction, the current review describes the methods of synthesis and uses of nanoferrites in a variety of electrical and electronic applications, magnetic recording applications for audio and videotapes, high density digital recording discs, computer memory, antenna fabrication etc and in medical field for cancer treatment and in MRI, in household appliances. The benefits of the Co-Precipitation approach over hydrothermal and sol-gel synthesis procedures for the creation of nanoferrites were the main focus of this review.Key-Words / Index Term
Nano ferrites, Hydro thermal method, sol-gel method, Co-precipitation method, Environmental applicationsReferences
[1] S.Hazra, N.N. Ghosh, “Preparation of Nanoferrites and Their Applications”, Journal of Nanoscience and Nanotechnology, Vol 14, No. 2 , pp. 1983-2000, 2014.
[2] V.M. Vicky, S. Rodney, S. Ajay, R.M. Hardik, “Introduction to metallic nanoparticles” ,J Pharm Bioallied Sci. Vol 4, 282–289, 2010.
[3] R. Jasrotia, P. Puri, A. Verma, V.P. Singh, “Magnetic and electrical traits of solgel synthesized Ni-Cu-Zn nanosized spinel ferrites for multi-layer chip inductors application”, Journal of Solid State Chemistry ,2020.
[4] G. Pilania, V. Kocevski, J.A. Valdez, “Prediction of structure and cation ordering in an ordered normal-inverse double spinel”, Commun Mater 1, 84, 2020.
[5] Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen, “Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4:a first-principles study”, J.Phys. D:Appl. Phys.43 445003, 2010.
[6] M. Houshiar, F. Zebhi, Z. J. Razi, A.A.Z. Askari, “Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, co precipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties”. Journal of Magnetism and Magnetic Materials Volume 371, Pages 43-48, 2014.
[7] Nejati, Zabihi. “Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method”, Chemistry Central journal. Vol 6. Pp 23. 2012. 10.1186/1752-153X-6-23.
[8] L.M. Karoline, T.E. Taveira, H.A. Winkler, F. Hatem, P.A. Gómez, “CoFe2O4 and ZnFe2O4 Nanoparticles: An Overview About Structure, Properties, Synthesis and Biomedical Applications”, Journal of Colloid Science and Biotechnology,Vol 5, No. 1, pp. 45-54, 2016.
[9] A. Ihab, A. Latif, “Fabrication of Nano - Size Nickel Ferrites for Gas Sensors Applications”, journal of physics vol. 1 no. 2, pp. 50 – 53, 2012.
[10] R. Srivastava, B.C. Yadav, “Ferrite Materials: Introduction, Synthesis Techniques, and Applications as Sensors”, International Journal of Green Nanotechnology, Pages: 141–154,2012, ISSN: 1943-0892.
[11] M.K.Zate , S.D.Raut Shubhangi, D.Shirsat Sushil Sangale , A.S.Kadam. “Ferritenanostructures: synthesis methods , Spinal Ferrite Nanostructures for Energy Storage Devices” ISBN 978-0-12-819237-5, pp 13-34, 2020.
[12] N. Kasapoglu, B. Birsöz, A.Baykal, Y. Köseoglu, M. Toprak. "Synthesis and magnetic properties of octahedral ferrite Ni?Co1?? Fe2O4 nanocrystals" Open Chemistry, vol. 5, no. 2, pp. 570-580, 2007.
[13] G. Allaedini, S.M. Tasirin, P. Aminayi, “Magnetic properties of cobalt ferrite synthesized by hydrothermal Method” Int Nano Lett, Vol 5, 183–186, 2015.
[14] T. Ramaprasad, R. Jeevan Kumar, U. Naresh, M. Prakash, D. Kothandanand , K. Chandra Babu Naidu. “ Effect of pH value on structural and magnetic properties of CuFe2O4 nanoparticles synthesized by low temperature hydrothermal technique”, Mater. Res. Express, Vol 5, 095025, 2018.
[15] T. Firoz Khan, U. Naresh, T. Ramprasad, R. Jeevan Kumar , “Structural, Morphological, and Magnetic Properties of Cobalt-Doped Nickel Ferrite Nanoparticles”, Journal of Superconductivity and Novel Magnetism, 2021.
[16] K.Chandra Babu Naidu, W.Madhuri, “Hydrothermal synthesis of NiFe2O4 nano-particles: structural, morphological, optical, electrical and magnetic properties”. Bull. Mater. Sci., Vol. 40, No. 2, Pp.417–425. 2017.
[17] A. Gatelyt?, D. Jasaitis, A. Beganskien?, A. Kareiva, “Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites”. Materials science, Vol. 17, No.3.2011.
[18] G.H. Kale, A.V. Humbe, S.D. Birajdar, A.B. Shinde, K.M. Jadhav, “L-Ascorbic acid assisted synthesis and characterization of CoFe2O4 nanoparticles at different annealing temperatures”, J Mater Sci: Mater Electron, 09, 2015.
[19] J.Azadmanjiri, H.K Salehani , M.R. Barati , F. Farzan, “Preparation and Electromagnetic properties of Ni1?x CuxFe2O4 nanoparticle ferrites by sol–gel auto-combustion method”, Materials Letters 61, pp 84–87, 2007.
[20] C. Izabela, V. Cristian, “Synthesis Methods of Obtaining Materials for Hydrogen Sensors”, Sensors , Vol 21(17), pp5758, 2021.
[21] Rachna, N.B.Singh, A. Agarwal, “Preparation, Characterization, Properties And Applications of nano Zinc Ferrite”, Materials Today: Proceedings, Volume 5, Issue 3, Part 1, Pages 9148-9155, 2018.
[22] E.E.Ateia, D.N.Ghaar, Y. Badr, N. Fangary, “Nd:YAG laser irradiation effect on the physical properties of cobalt ferrite nanoparticles”, Applied Physics A , Vol 125, pp 697, 2019.
[23] P. Thakur, R. Sharma, M. Kumar, S.C. Katyal, “Super paramagnetic La Doped Mn-Zn Nano Ferrites: Dependence on Dopant Content and CrystalliteSize”, Mater.Res.Express, Vol 3, 075001, 2016.
[24] N. Zhu, H. Ji, P. Yu, J. Niu, M.U. Farooq, M.W. Akram, I. O.Udego, H. Li and X. Niu, “Surface Modification of Magnetic Iron Oxide Nanoparticles”, Nanomaterials, Vol 8, pp 810. 2018.
[25] G. Rana , P. Dhiman , A. Kumar, D.N.Vo, G. Sharma , S. Sharma, Mu. Naushad, “Recent advances on nickel nano-ferrite: A review on processing techniques, properties and diverse applications”, Chemical-Engineering research and design, vol-175, pp 182-208, 2021.
[26] S.R. Mokhosi, W. Mdlalose, A. Nhlapo, M. Singh. “Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy”. Pharmaceutics Vol 14, pp 937, 2022.
[27] S.Y. Srinivasan, K.M. Paknikar, B. Dhananjay, G. Virendra, “Applications of cobalt ferrite nanoparticles in biomedical nanotechnology”, Nanomedicine (Lond), Vol 13(10), pp 1221-1238, 2018,ISSN 1743-5889.
[28] T. Dippong, E.A. Levei, O. Cadar, “Recent Advances in Synthesis And Applications of MFe2O4 (M=Co,Cu,Mn,Ni,Zn) Nanoparticles”, Nanomaterials,Vol 11, 1560, 2021.
[29] P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, “A review on MnZn ferrites: Synthesis, characterization and applications”. Ceram Int., Vol 46(10), pp15740–15763, 2020. .
[30] B. Issa, I.M. Obaidat, B.A.Albiss, Y. Haik, “Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications”. International Journal of Molecular Sciences. Vol 14(11), pp 21266-21305, 2013.Citation
T. Ram Prasad, S.Nagaveni, Anuradha Guptha, B. Ajay Kumar, "A comparative study on synthesis techniques of Nanoferrites and its applications," International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.6, pp.26-30, 2022 -
Open Access Article
Zero field splitting parameter of Mn2+ in SrCl2 single crystals
Ram Kripal
Research Paper | Journal-Paper (IJSRPAS)
Vol.10 , Issue.6 , pp.31-35, Dec-2022
Abstract
A theoretical study has been done to find crystal field parameters and zero-field splitting parameter of Mn2+ doped SrCl2 single crystals using superposition model and the perturbation theory. The theoretical zero-field splitting parameter D agrees well with the experimental value evaluated from EPR study. The present study supports the experimental result that Mn2+ ions substitute at Sr2+ site in SrCl2 single crystal.Key-Words / Index Term
A. Inorganic compounds; A. Single crystal; D. Crystal fields; D. Optical properties; D. Electron paramagnetic resonance.References
[1] C. Rudowicz, S. K. Misra, “Spin-Hamiltonian formalisms in electron magnetic resonance (EMR) and related spectroscopies”, Appl. Spectrosc. Rev. Vol. 36, pp. 11-63, 2001.
[2] Z.Y. Yang, Y. Hao, C. Rudowicz, Y.Y. Yeung, “Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin–spin and spin–other-orbit interactions for Ni2+(3d8) ions in trigonal crystal fields”, J. Phys.: Condens. Matter, Vol. 16, pp. 3481-3494, 2004.
[3] P. Gnutek, Z. Y. Yang, C. Rudowicz, “Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal Fek3+–OI2? defect center in KTaO3 Crystal”, J. Phys.: Condens. Matter, Vol. 21, pp. 455402-455412, 2009.
[4] S. K. Misra in: “Handbook of ESR (Vol.2)”, eds. C. P. Poole Jr., H. A. Farach, Springer, New York, 1999, Chapter IX, p. 291.
[5] H. Anandlakshmi, K. Velavan, I. Sougandi, R. Venkatesan, P. S. Rao, ”Single crystal EPR studies of Mn(II) doped into zinc ammonium phosphate hexahydrate (ZnNH4PO4·6H2O): A case of interstitial site for bio-mineral analogue”, Pramana, Vol. 62, pp. 77-86, 2004.
[6] S. Pandey, R. Kripal, A. K. Yadav, M. Aç?kgöz, P. Gnutek, C. Rudowicz, “Implications of direct conversions of crystal field parameters into zero-field splitting ones – Case study: Superposition model analysis for Cr3+ ions at orthorhombic sites in LiKSO4”, J. Lumin.. Vol.230, pp. 117548 (9 pages) 2020.
[7] I. Stefaniuk, “Electron paramagnetic resonance study of impurities and point defects in oxide crystals”, Opto-Electronics Rev., Vol. 26, pp. 81-91, 2018.
[8] A. Abragam, B. Bleaney, “Electron Paramagnetic Resonance of Transition Ions”, Clarendon Press, Oxford, 1970.
[9] D. J. Newman, B. Ng (Eds.), “Crystal Field Handbook”, Cambridge University Press,
Cambridge, 2000.
[10] T. H. Yeom, S. H. Choh, M. L. Du, “A theoretical investigation of the zero-field splitting parameters for an Mn2+ centre in a BiVO4 single crystal”, J. Phys.: Condens. Matter, Vol. 5, pp. 2017-2024, 1993.
[11] V. S. X. Anthonisamy, M. Velayutham, R. Murugesan, “Spin-lattice relaxation of Co(II) in hexaaquocobalt(II) picrylsulphonate tetrahydrate: An estimate from EPR line width of the dopant, Mn(II)”, Physica B, Vol. 262, pp. 13-19,1999.
[12] W. Hayes, “Crystals with the Fluorite Structure”, Clarendon Press, Oxford, 1974.
[13] W. Gehlhoff, W. Ulrici, “Transition Metal Ions in Crystals with the Fluorite Structure”, Phys. Stat. Sol. (b), Vol. 102, pp. 11-59, 1980.
[14] R. W. G. Wyckoff, “Crystal Structures”, Vol. 1, 2nd Ed., Interscience Publishers, New York, p. 239, 1963.
[15] M. G. Zhao, M. L. Du, G. Y. Sen, ”The eighth-order perturbation formula for the EPR cubic zero-field splitting parameter of d5(6S) ion and its applications to MgO:Mn2+ and MnCl2.2H2O”, J. Phys. C: Solid State Phys., Vol. 18, pp. 3241-3248, 1985.
[16] W. L. Yu, “Cubic zero-field splitting of a 6S state ion”, Phys. Rev. B, Vol. 39, pp. 622-632, 1989.
[17] Z. Y. Yang, “An investigation of the EPR zero-field splitting of Cr3+ ions at the tetragonal site and the Cd2+ vacancy in RbCdF3:Cr3+ crystals”, J. Phys.: Condens. Matter, Vol.12, pp. 4091-4096, 2000.
[18] D. J. Newman, B. Ng, “The Superposition model of crystal fields”, Rep. Prog. Phys., Vol. 52, pp. 699-763, 1989.
[19] W. L. Yu, M. G. Zhao, “Spin-Hamiltonian parameters of 6S state ions”, Phys. Rev. B, Vol. 37, pp. 9254-9267, 1988.
[20] Z. Y. Yang, C. Rudowicz, Y. Y. Yeung, “Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals”, Physica B, Vol.348, pp. 151-159, 2004.
[21] C. Rudowicz, H. W. F. Sung, “Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters?”, Physica B, Vol. 300, pp. 1-26, 2001.
[22] C. J. Radnell, J. R. Pilbrow, S. Subramanian, M. T. Rogers, “Electron paramagnetic resonance of Fe3+ ions in (NH4)2SbF5”, J. Chem. Phys., Vol. 62, pp. 49484952, 1975. .
[23] J. A. Weil, J. R. Bolton, “Electron Paramagnetic Resonance: Elementary Theory and Practical Applications”, second ed., Wiley, New York, 2007.
[24] W. L. Yu, M. G. Zhao, “Determination of the crystalline structure of Mn2+:CaZnf4 by EPR and optical spectra of Mn2+”, J. Phys. C: Solid State Phys., Vol. 18, pp. L525-L528, 1984.
[25] J. F. Clare, S. D. Devine, “Application of the superposition model to non-S-state ions”,J. Phys. C: Solid State Phys., Vol.17, pp. L581-L584, 1984.
[26] R. M. Macfarlane, „Zero Field Splittings of t23 Cubic Terms”, J. Chem. Phys.,Vol. 47, pp. 2066-2073, 1967; „Perturbation Methods in the Calculation of Zeeman Interactions and Magnetic Dipole Line Strengths for d3 Trigonal-Crystal Spectra”, Phys. Rev. B, Vol. 1, pp. 989-1004, 1970.
[27] M. H. L. Pryce. “Spin-Spin Interaction within Paramagnetic Ions”, Phys, Rev., Vol. 80, pp. 1107, 1950.
[28] R. R. Sharma, R. Orbach, T. P. Das, „Zero-Field Splitting of S-State Ions. I. Point-Multipole Model”, Phys. Rev., Vol.149, pp. 257-269, 1966.
[29] W. L. Yu, M. G. Zhao, “Zero-field splitting and the d–d transitions of Mn2+ on Ca(II) sites in Ca5(PO4)3F”, Phys. Stat. B, Vol. 140, pp. 203-212, 1987.
[30] Y. Y. Yeung, “Superposition model and its applications, in: Optical Properties of 3d-Ions in Crystals, Spectroscopy and Crystal Field Analysis (Chapter 3, pp.95-121)”, M. G. Brik and N. M. Avram (Eds.), Springer: Heidelberg, New York, Dordrecht, London, 2013.
[31] Q. Wei, “Investigations of the Optical and EPR Spectra for Cr3+ Ions in Diammonium Hexaaqua Magnesium Sulphate Single Crystal”, Acta Phys. Polon. A, Vol. 118, pp. 670-672, 2010.
[32] Y. Y. Yeung, C. Rudowicz, “Crystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sites”, J. Comput. Phys., Vol. 109, pp. 150-152, 1993.
[33] Y. Y. Yeung, C. Rudowicz, „Ligand field analysis of the 3dN ions at orthorhombic or higher symmetry sites”, Comput. Chem., Vol.16, pp. 207-216, 1992.Citation
Ram Kripal, "Zero field splitting parameter of Mn2+ in SrCl2 single crystals," International Journal of Scientific Research in Physics and Applied Sciences, Vol.10, Issue.6, pp.31-35, 2022
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.