Volume-11 , Issue-5 , Oct 2023, ISSN 2348-3423 (Online) Go Back
-
Open Access Article
Zero-Mass Scalar Field with Interacting and Non-interacting Two Fluids in f (R, T) Gravity
Kalpana Pawar, N.T. Katre
Research Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.5 , pp.1-18, Oct-2023
Abstract
This paper deals with the investigation of an accelerated expansion of a spatially homogeneous and isotropic flat Friedman-Lemaitre-Robertson-Walker (FLRW) universe in presence of zero-mass scalar fields associated with non-interacting and interacting barotropic fluid and dark energy in the framework of f (R, T) gravity. The exact solutions to the field equations have been obtained in two cases: power law and exponential law of volumetric expansion. Some physical and geometrical properties have been investigated for both power and exponential law models in non-interacting and interacting cases; in particular, the energy conditions and density parameters. The physical stability of the derived cosmological models has also been examined. We find that the models with exponential volumetric expansion are open, have accelerating expansion and physically stable; while, the models with power law volumetric expansion are open in both accelerating and decelerating cases, but physically stable and unstable in decelerating and accelerating case respectively.Key-Words / Index Term
FLRW space-time, f (R, T) gravity, Dark Energy, Zero-mass scalar field, Interacting and Non-interacting, Physical stability.References
[1] Garnavich, Peter M., Robert P. Kirshner, Peter Challis, John Tonry, Ron L. Gilliland, R. Chris Smith, Alejandro Clocchiatti et al. "Constraints on cosmological models from Hubble Space Telescope observations of high-z supernovae." The Astrophysical Journal 493, no. 2, L53, 1998.
[2] Garnavich, Peter M., Saurabh Jha, Peter Challis, Alejandro Clocchiatti, Alan Diercks, Alexei V. Filippenko, Ron L. Gilliland et al. "Supernova limits on the cosmic equation of state." The Astrophysical Journal 509, no. 1, 74, 1998.
[3] Riess, Adam G., Alexei V. Filippenko, Peter Challis, Alejandro Clocchiatti, Alan Diercks, Peter M. Garnavich, Ron L. Gilliland et al. "Observational evidence from supernovae for an accelerating universe and a cosmological constant." The astronomical journal 116, no. 3, 1009, 1998.
[4] Riess, Adam G., Louis-Gregory Strolger, John Tonry, Stefano Casertano, Henry C. Ferguson, Bahram Mobasher, Peter Challis et al. "Type Ia supernova discoveries at z> 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution." The Astrophysical Journal 607, no. 2, 665, 2004.
[5] Perlmutter, Saul, Goldhaber Aldering, Gerson Goldhaber, R. A. Knop, Peter Nugent, Patricia G. Castro, Susana Deustua et al. "Measurements of ? and ? from 42 high-redshift supernovae." The Astrophysical Journal 517, no. 2, 565, 1999.
[6] Bennett, C. L. "First year Wilkinson microwave anisotropy probe (WMAP) observations: Preliminary maps and basic results." Astrophys. J. Suppl 148, no. 1, 2003.
[7] Spergel, David N., Licia Verde, Hiranya V. Peiris, Eiichiro Komatsu, M. R. Nolta, Charles L. Bennett, Mark Halpern et al. "First-year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: determination of cosmological parameters." The Astrophysical Journal Supplement Series 148, no. 1, 175, 2003.
[8] Caldwell, Robert R., and Michael Doran. "Cosmic microwave background and supernova constraints on quintessence: concordance regions and target models." Physical Review D 69, no. 10, 103517, 2004.
[9] Huang, Zhuo-Yi, Bin Wang, Elcio Abdalla, and Ru-Keng Su. "Holographic explanation of wide-angle power correlation suppression in the cosmic microwave background radiation." Journal of Cosmology and Astroparticle Physics 2006, no. 05, 013, 2006.
[10] Tegmark, Max, Michael A. Strauss, Michael R. Blanton, Kevork Abazajian, Scott Dodelson, Havard Sandvik, Xiaomin Wang et al. "Cosmological parameters from SDSS and WMAP." Physical review D 69, no. 10, 103501, 2004.
[11] Tegmark, Max, Michael R. Blanton, Michael A. Strauss, Fiona Hoyle, David Schlegel, Roman Scoccimarro, Michael S. Vogeley et al. "The three-dimensional power spectrum of galaxies from the sloan digital sky survey." The Astrophysical Journal 606, no. 2 (2004): 702.
[12]Weinberg, Steven. "The cosmological constant problem." Reviews of modern physics 61, no. 1 (1989): 1.
[13] Carroll, Sean M. "The cosmological constant." Living reviews in relativity 4, no. 1 (2001): 1-56.
[14] Peebles, P. James E., and Bharat Ratra. "The cosmological constant and dark energy." Reviews of modern physics 75, no. 2 (2003): 559.
[15] Padmanabhan, Thanu. "Cosmological constant—the weight of the vacuum." Physics Reports 380, no. 5-6 (2003): 235-320.
[16] Eisenstein, Daniel J., Idit Zehavi, David W. Hogg, Roman Scoccimarro, Michael R. Blanton, Robert C. Nichol, Ryan Scranton et al. "Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies." The Astrophysical Journal 633, no. 2 (2005): 560.
[17] Nojiri, Shin`ichi, and Sergei D. Odintsov. "Introduction to modified gravity and gravitational alternative for dark energy." International Journal of Geometric Methods in Modern Physics 4, no. 01 (2007): 115-145.
[18] Aghanim, Nabila, Yashar Akrami, Mark Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday et al. "Planck 2018 results-VI. Cosmological parameters." Astronomy & Astrophysics 641 (2020): A6.
[19] Babourova, O. G., and B. Frolov. "The solution of the cosmological constant problem: the cosmological constant exponential decrease in the super-early Universe." Universe 6, no. 12 (2020): 230.
[20] Geng, C. Q., C. C. Lee, and L. Yin. "Constraints on a special running vacuum model." The European Physical Journal C 80, no. 1 (2020): 69.
[21] Wetterich, Christof. "Cosmology and the fate of dilatation symmetry." Nuclear Physics B 302, no. 4 (1988): 668-696.
[22] Ratra, Bharat, and Philip JE Peebles. "Cosmological consequences of a rolling homogeneous scalar field." Physical Review D 37, no. 12, 3406, 1988.
[23] Cicoli, Michele, Francisco G. Pedro, and Gianmassimo Tasinato. "Natural quintessence in string theory." Journal of Cosmology and Astroparticle Physics 2012, no. 07, 044, 2012.
[24] Wetterich, Christof. "Inflation, quintessence, and the origin of mass." Nuclear Physics B 897 (2015): 111-178.
[25] Tsujikawa, Shinji. "Quintessence: a review." Classical and Quantum Gravity 30, no. 21 (2013): 214003.
[26] Turner, M. S., and M. White. "CDM models with a smooth component." Physical Review D 56, no. 8 (1997): R4439.
[27] Xu, L., Y. Wang, M. Tong, and H. Noh. "CMB temperature and matter power spectrum in a decay vacuum dark energy model." Physical Review D 84, no. 12 (2011): 123004.
[28] Armendariz-Picon, C., T. Damour, and V. Mukhanov. "k-Inflation." Physics Letters B 458, no. 2-3 (1999): 209-218.
[29] Chiba, Takeshi, Takahiro Okabe, and Masahide Yamaguchi. "Kinetically driven quintessence." Physical Review D 62, no. 2 (2000): 023511.
[30] Varshney, Gunjan, Umesh Kumar Sharma, and Anirudh Pradhan. "Reconstructing the k-essence and the dilation field models of the THDE in f (R, T) gravity." The European Physical Journal Plus 135, no. 7 (2020): 541.
[31] Caldwell, Robert R. "A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state." Physics Letters B 545, no. 1-2 (2002): 23-29.
[32] Caldwell, Robert R., Marc Kamionkowski, and Nevin N. Weinberg. "Phantom energy: dark energy with w 1 causes a cosmic doomsday." Physical review letters 91, no. 7 (2003): 071301.
[33] Elizalde, Emilio, Shin’ichi Nojiri, and Sergei D. Odintsov. "Late-time cosmology in a (phantom) scalar-tensor theory: dark energy and the cosmic speed-up." Physical Review D 70, no. 4 (2004): 043539.
[34] Anisimov, Alexey, Eugeny Babichev, and Alexander Vikman. "B-inflation." Journal of Cosmology and Astroparticle Physics 2005, no. 06 (2005): 006.
[35] Sen, Ashoke. "Rolling tachyon." Journal of High Energy Physics 2002, no. 04 (2002): 048.
[36] Padmanabhan, T., and T. Roy Choudhury. "Can the clustered dark matter and the smooth dark energy arise from the same scalar field?." Physical Review D 66, no. 8 (2002): 081301.
[37] Khoury, Justin, and Amanda Weltman. "Chameleon fields: Awaiting surprises for tests of gravity in space." Physical review letters 93, no. 17 (2004): 171104.
[38] Nojiri, Shin’ichi, Sergei D. Odintsov, V. K. Oikonomou, and Tanmoy Paul. "Unifying holographic inflation with holographic dark energy: A covariant approach." Physical Review D 102, no. 2 (2020): 023540.
[39] Shekh, S. H. "Models of holographic dark energy in f (Q) gravity." Physics of the dark Universe 33 (2021): 100850.
[40] Wang, Shuang, Yi Wang, and Miao Li. "Holographic dark energy." Physics reports 696 (2017): 1-57.
[41] S. D. Katore, S. V. Gore, and A. Y. Shaikh, “Holographic Dark Energy Cosmological Models in f(G) Theory,” New Astron., vol. 80, p. 101420, Oct. 2020, doi: 10.1016/j.newast.2020.101420.
[42] Pawar, D. D., R. V. Mapari, and P. K. Agrawal. "A modified holographic Ricci dark energy model in f (R, T) theory of gravity." Journal of Astrophysics and Astronomy 40, pp.1-8, 2019.
[43] Zhang, Jing-Fei, Yun-He Li, and Xin Zhang. "A global fit study on the new agegraphic dark energy model." The European Physical Journal C 73, no. 1, 2280, 2013.
[44] Pourbagher, A., and Alireza Amani. "Thermodynamics of the viscous f (T, B) gravity in the new agegraphic dark energy model." Modern Physics Letters A 35, no. 20, 2050166, 2020.
[45] Pourhassan, Behnam. "Viscous modified cosmic Chaplygin gas cosmology." International Journal of Modern Physics D 22, no. 09, 1350061, 2013.
[46] Pourhassan, Behnam, and E. O. Kahya. "Extended Chaplygin gas model." Results in Physics 4, 101, 2014.
[47] Kahya, Emre Onur, and B. Pourhassan. "The universe dominated by the extended Chaplygin gas." Modern Physics Letters A 30, no. 13, 1550070, 2015.
[48] Campos, Juliano P., Júlio C. Fabris, Rafael Perez, Oliver F. Piattella, and Hermano Velten. "Does Chaplygin gas have salvation?." The European Physical Journal C 73, 1-15, 2013.
[49] Avelino, P. P., K. Bolejko, and G. F. Lewis. "Nonlinear Chaplygin gas cosmologies." Physical Review D 89, no. 10 (2014): 103004.
[50] Buchdahl, Hans A. "Non-linear Lagrangians and cosmological theory." Monthly Notices of the Royal Astronomical Society 150, no. 1 (1970): 1-8.
[51] Ferraro, R., and F. Fiorini. "Modified teleparallel gravity: Inflation without an inflaton." Physical Review D 75, no. 8 (2007): 084031.
[52] Bengochea, G. R., and R. Ferraro. "Dark torsion as the cosmic speed-up." Physical Review D 79, no. 12 (2009): 124019.
[53] Harko, Tiberiu, Francisco SN Lobo, Shin’ichi Nojiri, and Sergei D. Odintsov. "f (R, T) gravity." Physical Review D 84, no. 2 (2011): 024020.
[54] Felice, A. De, and S. Tsujikawa. "Construction of cosmologically viable f (G) gravity models." Physics Letters B 675, no. 1, (2009): 1-8.
[55] Bamba, K., M. Ilyas, M. Z. Bhatti, and Z. Yousaf. "Energy conditions in modified f (G) gravity." General Relativity and Gravitation 49 (2017): 1-17.
[56] Goheer, N., R. Goswami, P. KS Dunsby, and K. Ananda. "Coexistence of matter dominated and accelerating solutions in f (G) gravity." Physical Review D 79, no. 12 (2009): 121301.
[57] Elizalde, E., R. Myrzakulov, V. V. Obukhov, and D. Sáez-Gómez. "?CDM epoch reconstruction from F (R, G) and modified Gauss–Bonnet gravities." Classical and Quantum Gravity 27, no. 9 (2010): 095007.
[58] Bamba, K., S. D. Odintsov, L. Sebastiani, and S. Zerbini. "Finite-time future singularities in modified Gauss–Bonnet and ? (R, G) gravity and singularity avoidance." The European Physical Journal C 67(2010): 295-310.
[59] Bahamonde, S., M. Marciu, and P. Rudra. "Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term." Journal of Cosmology and Astroparticle Physics 2018, no. 04 (2018): 056.
[60] Jiménez, J. B., L. Heisenberg, and T. Koivisto. "Coincident general relativity." Physical Review D 98, no. 4 (2018): 044048.
[61] Jiménez, J. B., L. Heisenberg, T. Koivisto.and S. Pekar. "Cosmology in f (Q) geometry." Physical Review D 101, no. 10 (2020): 103507.
[62] Xu, Y., G. Li, T. Harko, and S. D. Liang. "f (Q, T) gravity." The European Physical Journal C 79 (2019): 1-19.
[63] Xu, Y., T. Harko, S. Shahidi, and S. D. Liang. "Weyl type f (Q, T) gravity, and its cosmological implications." The European Physical Journal C 80, no. 5 (2020): 1-22.
[64] Miranda, V., S. E. Jorás, L. Waga, and M. Quartin. "Viable singularity-free f (R) gravity without a cosmological constant." Physical Review Letters 102, no. 22 (2009): 221101.
[65] Sharif, M., and Z. Yousaf. "Instability of a dissipative restricted non-static axial collapse with shear viscosity in f (R) gravity." Journal of Cosmology and Astroparticle Physics 2014, no. 06, 019, 2014.
[66] Chirde, V. R., and S. H. Shekh. "Isotropic background for interacting two fluid scenario coupled with zero mass scalar field in modified gravity." Bulg. J. Phys 43 (2016): 156-169.
[67] Pawar, K., N. T. Katre, and S. H. Shekh. “Accelerating expansion of two fluid Universe coupled with zero mass scalar field in f(R) gravity”. J. of Emerging Tech. and Research, 9, no. 12, pp. e294-e300, 2022.
[68] Houndjo, M. J. S., and O. F. Piattella. "Reconstructing f (R, T) gravity from holographic dark energy." International Journal of Modern Physics D 21, no. 03, 1250024, 2012.
[69] Samanta, G. C. "Universe filled with dark energy (DE) from a wet dark fluid (WDF) in f (R, T) gravity." International Journal of Theoretical Physics 52, pp.2303-2315, 2013.
[70] Singh, J. K., A. Singh, G. K. Goswami, and J. Jena. "Dynamics of a parametrized dark energy model in f (R, T) gravity." Annals of Physics 443 (2022): 168958.
[71] Houndjo, M. J. S. "Reconstruction of f (R, T) gravity describing matter dominated and accelerated phases." International Journal of Modern Physics D 21, no. 01 (2012): 1250003.
[72] Amirhashchi, H., A. Pradhan, and B. Saha. "An interacting two-fluid scenario for dark energy in an FRW universe." Chinese Physics Letters 28, no. 3 (2011): 039801.
[73] Amirhashchi, H., A. Pradhan, and H. Zainuddin. "An interacting and non-interacting two-fluid dark energy models in FRW universe with time dependent deceleration parameter." International Journal of Theoretical Physics 50 (2011): 3529-3543.
[74] Amirhashchi, H., A. Pradhan, and H. Zainuddin. "Interacting two-fluid viscous dark energy models in a non-flat universe." Research in Astronomy and Astrophysics 13, no. 2 (2013): 129.
[75] Pradhan, A., H. Amirhashchi, and B. Saha. "An interacting and non-interacting two-fluid scenario for dark energy in FRW universe with constant deceleration parameter." Astrophysics and Space Science 333, pp.343-350, 2011.
[76] Saha, B., H. Amirhashchi, and A. Pradhan. "Two-fluid scenario for dark energy models in an FRW universe-revisited." Astrophysics and Space Science 342, no. 1, 257-267, 2012.
[77] Adhav, K. S., G. B. Tayade, and A. S. Bansod. "Interacting dark matter and holographic dark energy in an anisotropic universe." Astrophysics and space science 353, pp.249-257, 2014.
[78] Rao, V. U. M., M. Vijaya Santhi, T. Vinutha, and Y. Aditya. "Two-Fluid Scenario for Higher Dimensional Dark Energy Cosmological Model in Saez-Ballester Theory of Gravitation." Prespacetime Journal 7, no. 2, 293-308, 2016.
[79] Reddy, D.R.K., Santikumar, R. and Naidu, R.L. Bianchi Type III Cosmological Models in f(R, T) Theory of Gravity. Astrophysics and Space Science, 342, 249-252, 2012.
[80] Reddy, D. R. K., R. L. Naidu, and B. Satyanarayana. "Kaluza-Klein Cosmological Model in f (R, T) Gravity." International Journal of Theoretical Physics 51, pp.3222-3227, 2012.
[81] Singh, C. P., and V. Singh. "Reconstruction of modified f (R, T) gravity with perfect fluid cosmological models." General Relativity and Gravitation 46, pp.1-14, 2014.
[82] Sahoo, P. K., B. Mishra, and G. Chakradhar Reddy. "Axially symmetric cosmological model in f (R, T) gravity." The European Physical Journal Plus 129, pp.1-8, 2014.
[83] Kumar Yadav, Anil. "Bianchi-V string cosmology with power law expansion in f (R, T) gravity." The European Physical Journal Plus 129, no. 9, 194, 2014.
[84] Brahma, Bishnu Prasad, and Mukunda Dewri. "Bulk Viscous Bianchi Type-V Cosmological Model in f (R, T) Theory of Gravity." Frontiers in Astronomy and Space Sciences 9, 11, 2022.
[85] Zhang, Xin. "An interacting two-fluid scenario for quintom dark energy." Communications in Theoretical Physics 44, no. 4, 762, 2005.Citation
Kalpana Pawar, N.T. Katre, "Zero-Mass Scalar Field with Interacting and Non-interacting Two Fluids in f (R, T) Gravity," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.5, pp.1-18, 2023 -
Open Access Article
Scheme to Make DSR and AODV Energy Efficient
Sonia Sharma
Research Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.5 , pp.19-24, Oct-2023
Abstract
Mobile Adhoc networks is the latest trend in networking arena and in research criterion. Many issues exist. Most important being routing, security and power issues. This paper is an effort to improve power functions of protocols. Two Algorithms have been proposed. This work has been done on two most popular routing protocols AODV and DSR used in on demand routing. The concept has been implemented and simulated. The results have been verified by simulating the protocols on NS2. Various metrics used are total energy consumed and packets exhausted.Key-Words / Index Term
AODV, DSR, energy, NS2, SimulatorReferences
[1]. C. E. Perkins and E. M. Royer, “Ad-Hoc On Demand Distance Vector Routing,” In proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications(WMCSA), New Orleans, LA, pp. 90-100, 1999.
[2]. Royer E. M. and Toh C. K,” A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks’,” IEEE Personal Communications, vol.6, no.2, pp. 46-55, 1999.
[3]. Johnson D.B. and Maltz D.B, “Dynamic Source Routing in Ad Hoc Wireless Networks,”.Mobile Computing, Kluwer Academic Publishers, vol. 353, pp.153-181,1996.
[4]. Gupta Nishant and Das Sami R, “Energy Aware On Demand Routing for Mobile Adhoc Networks,” International Workshop on Distributed Computing, Mobile and Wireless Computing, LNCS, vol. 2571, pp.164-173, 2002.
[5]. Chiasserini C.F. and Rao R.R, “ Improving Battery Performance by Using Traffic Shaping Techniques,” IEEE Journal on Selected Areas of Communications, vol.19, no.7, pp.1385-1394, 2001.
[6]. Ashwani Kush, Sunil , Divya, “Energy Efficient Routing For MANET” in IEEE Explore in the proceedings of ICM2CS-2010), held at JNU New Delhi 13-14th Dec 2010. Pp.112-116.2010 IEEE
[7]. Woo M., S. Singh. and Raghavendra C. S. “Power-Aware Routing in Mobile Adhoc Networks”, Proceedings of ACM/IEEE International Conference on Mobile Computing and Networking, pp. 181–190, 1998.
[8]. Chang J. H. and Tassiulas L. “Energy Conserving Routing in Wireless Adhoc Networks”, in the Proceedings of IEEE INFOCOM’00, pp. 22-31, 2000.
[9]. Chiasserini C. F., Chlamtac I, Monti P. and Nucci, “A. Energy Efficient Design of Wireless Adhoc Networks”, In the proceedings of Networking, pp. 376- 386, 2002.
[10]. Adamou M. and Sarkar S, “A Framework for Optimal Battery Management for Wireless Nodes”, In the proceedings of IEEE INFOCOMP ,pp. 1783-1792, 2002.
[11]. Kawadia V. and Kumar P. R. “Power Control and Clustering in Adhoc Networks”, In the proceedings of IEEE INFOCOM’03, pp. 459-469, 2003.
[12]. Toh C. K, “Maximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Adhoc Networks”, IEEE Communications Magazine, vol. 39,no. 6, pp.138-147, 2001.
[13]. Zheng R. and Kravets R. “On Demand Power Management for Adhoc Networks”, In the proceedings of IEEE INFOCOMP 2003, vol. 1, pp. 481-491,2003.
[14]. Singh S. and Raghavendra C. S, “PAMAS – Power Aware Multi-Access protocol with Signalling for Ad- Hoc Networks”, ACM SIGCOMM, Computer Communication Review, pp.5-26, 1998.
[15]. Laura Sanchez et al, “Energy and Delay-Constrained Routing in Mobile Adhoc Networks: An Initial Approach”, In the Proceedings of ACM International Workshop on Performance Evaluation of Wireless Adhoc, Sensor and Ubiquitous Networks, pp.262-263, 2005.
[16]. A.Kush,Divya,Vishal ,”Energy efficient Routing for MANET” , International conference on applied and communication tech, Elsevier Publ, pp.189-194, 2014
[17]. Senouci S. M. and Naimi M, “New Routing for Balanced Energy Consumption in Mobile Adhoc Networks.”, In the proceedings of ACM International Workshop on Performance Evaluation of Wireless Adhoc, Sensor and Ubiquitous Networks , pp.238-241, 2005.
[18]. Ashwani Kush, P.Gupta and R. Chauhan. “Stable and Energy Efficient Routing for Mobile Adhoc Networks”, In the Fifth International Conference on Information Technology: New Generations, 2008 (ITNG 2008), Las Vegas USA, Digital Object Identifier 10.1109/ITNG.2008.230 at IEEE explore., pp.1028 – 1033, 2008.
[19]. Ashwani Kush and P. Gupta. “Power Aware Virtual Node Routing Protocol for Ad hoc Networks”, International Journal of Ubiquitous Computing and Communication (UBICC), South Korea, Vol.2, No.3, pp.55-62, 2007.
[20]. Eitan Altman and Tania Jimenez, “Lecture Notes on NS Simulator for Beginners”, December 03, 2003.
[21]. Bettstetter C. and Hartenstein H. Stochastic, “Properties of the Random Waypoint Mobility Model: Epoch Length, Direction Distribution and Cell Change Rate”, In the Proceedings of the 5th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, pp. 7-14, 2002.
[22]. P. Dhivya and S. Meenakshi, “A Review of Congestion Control Techniques in Mobile Ad-hoc Network”, International Journal of Computer Sciences and Engineering and Engineering, Vol.3, Issue.9, pp.44-49, 2015.
[23]. Leena Pal, Pradeep Sharma, Netram Kaurav and Shivlal Mewada,” Performance Analysis of Reactive and Proactive Routing Protocols for Mobile Ad-hoc –Networks”. ISROSET- IJSRNSC Vol-1, Issue-5, pp(1-4) Nov-Dec 2013.
[24]. GATETE Marcel, HARUBWIRA Flaubert, “A New QoS-Oriented Ant-Colony-Based Cluster Head Selection Protocol using Fuzzy Logic in Mobile Ad Hoc Networks,” International Journal of Scientific Research in Computer Science and Engineering, Vol.9, Issue.6, pp.20-34, 2021.
[25]. Pradeep Chouksey, “Introduction of MANET,” International Journal of Scientific Research in Network Security and Communication, Vol.4, Issue.2, pp.15-19, 2016.
[26]. Johnson, d. B., maltz, d. A, hu, y.-c., and jetcheva, j. G., “The Dynamic Source Routing protocol for mobile ad hoc networks,” March 2001.
[27]. Li, Q., Aslam, J., And Rus, D, “Online power-aware routing,” in wireless ad-hoc networks, August 2001.
[28]. Istikmal “Analysis and evaluation optimization dynamic source routing (DSR) protocol in mobile AdHoc network based on ant algorithm”, 2013 IEEE.
[29]. G. Rajkumar “Optimization throughout with reduction in power consumption and performance comparison of DSR and AODV routing protocols”, 2012 IEEE
[30]. Deepti Badal & Rajender Singh, “A Energy Efficient Approach to DSR based Routing Protocol for Ad Hoc Network”. International Journal of Computer Applications (0975 – 8887) Vol.118,No.4, May 2015.Citation
Sonia Sharma, "Scheme to Make DSR and AODV Energy Efficient," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.5, pp.19-24, 2023 -
Open Access Article
Cobalt-ferrite Nanoparticles and Their Various Technological Applications: A Short Review
D. Pal
Review Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.5 , pp.25-30, Oct-2023
Abstract
Cobalt ferrite magnetic nanoparticles have been regarded as a significant material in the field of nanotechnology for their desirable physical, chemical, magnetic, electrical and optical properties. The particles possess rich and unique magnetic properties such as high magnetocrystalline anisotropy, high coercivity, and moderate saturation magnetization etc. Easy synthesis of the particles with tunable sizes and different shapes along with chemical stability make them practically important in various technological applications. Tunable magnetic properties of the nanoparticles open up the possibility of a diverse range of useful applications such as high-density magnetic storage media, sensors, telecommunications, nano-biotechnology etc. This review article represents an overview of synthesis techniques, magnetic properties and various applications of cobalt ferrite nanoparticles including hyperthermia therapy, drug delivery, magnetic resonance imaging etc.Key-Words / Index Term
Cobalt ferrite, Magnetocrystalline anisotropy, Coercivity, Superparamagnetism, Hyperthermia, Drug delivery.References
[1] M. Kamran, and M. Anis-ur-Rehman, “Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications,” Journal of Alloys and Compounds, Vol. 822, p. 153583, 2020.
[2] A. Amirabadizadeh, Z. Salighe, R. Sarhaddi, and Z. Lotfollahi, “Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties,” Journal of Magnetism and Magnetic Materials, Vol. 434, pp. 78-85, 2017.
[3] M. Nidhin, S. S. Nazeer, R. S. Jayasree, M. S. Kiran, B. U. Nair, and K. J. Sreeram, “Flower shaped assembly of cobalt ferrite nanoparticles: application as T2 contrast agent in MRI,” RSC Advances, Vol. 3, pp. 6906-6912, 2013.
[4] X. Mou, Z. Ali, S. Li, and N. He, “Applications of Magnetic Nanoparticles in Targeted Drug Delivery System,” Journal of Nanoscience and Nanotechnology, Vol. 15, pp. 54–62, 2015.
[5] S. Fayazzadeh, M. Khodaei, M. Arani, S. R. Mahdavi, T. Nizamov, and A. Majouga, “Magnetic Properties and Magnetic Hyperthermia of Cobalt Ferrite Nanoparticles Synthesized by Hydrothermal Method,” Journal of Superconductivity and Novel Magnetism, Vol. 33, pp. 2227-2233, 2020.
[6] P. Halvaee, S. Dehghani, S. Hoghoghifard, “Low Temperature Methanol Sensors Based on Cobalt Ferrite Nanoparticles, Nanorods, and Porous Nanoparticles," IEEE Sensors Journal, vol. 20, pp. 4056-4062, 2020.
[7] F. J. Pedrosa, J. Rial, K. M. Golasinski, M. N. Guzik, A. Quesada, J. F. Fern´andez, S. Deledda, J. Camarero, and A. Bollero, “Towards high performance CoFe2O4 isotropic nanocrystalline powder for permanent magnet applications,” Applied Physics Letter, Vol. 109, p. 223105, 2016.
[8] V. Tsurkan, H.-A. Krug von Nidda, J. Deisenhofer, P. Lunkenheimer, and A. Loidl, “On the complexity of spinels: Magnetic, electronic, and polar ground states,” Physics Reports, Vol. 926, pp. 1–86, 2021.
[9] D. Carta, A. Corrias, A. Falqui, R. Brescia, E. Fantechi, F. Pineider, and C. Sangregorio, “EDS, HRTEM/STEM, and X-ray absorption spectroscopy studies of co-substituted maghemite nanoparticles,” The Journal of Physical Chemistry C, Vol. 117 (18), pp. 9496-9506, 2013.
[10] M. N. Singh, A. K. Sinha, and H. Ghosh, Determination of transition metal ion distribution in cubic spinel Co1.5Fe1.5O4 using anomalous x-ray diffraction, AIP Adv., Vol. 5, p. 087115, 2015.
[11] S. C. Goh, C. H. Chia, S. Zakaria, M. Yusoff, C. Y. Haw, S. Ahmadi, N. M. Huang, and H. N. Lim, “Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination,” Materials Chemistry and Physics, Vol. 120, pp. 31–35, 2010.
[12] G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, C. Sangregorio, “Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties,” Journal of Magnetism and Magnetic Materials, Vol. 311, pp. 10-16, 2007.
[13] W. Kachi, A. Majeed Al-Shammari, I. G. Zainal, “Cobalt Ferrite Nanoparticles: Preparation, characterization and salinized with 3-aminopropyl triethoxysilane,” Energy Procedia, Vol. 157, pp. 1353-1365, 2019.
[14] S. M. El-Sheikh, F. A. Harraz, M. M. Hessien, “Magnetic behavior of cobalt ferrite nanowires prepared by template-assisted technique,” Materials Chemistry and Physics, Vol. 123, pp. 254–259, 2010.
[15] P. Jing, J. Du, C. Jin, J. Wang, L. Pan, J. Li and Q. Liu, “Improved coercivity and considerable saturation magnetization of cobalt ferrite (CoFe2O4) nanoribbons synthesized by electrospinning,” Journal of Materials Science, Vol. 51, pp. 885–892, 2016.
[16] F. Eskandari, S. B. Porter, M. Venkatesan, P. Kameli, K. Rode, and J. M. D. Coey, “Magnetization and anisotropy of cobalt ferrite thin films,” Physical Review Materials, Vol. 1, p. 074413, 2017.
[17] J. Wagner, T. Autenrieth, and R. Hempelmann, “Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O4–SiO2 core shell particles],” Journal of Magnetism and Magnetic Materials, Vol. 252, pp. 4-6, 2002.
[18] L. A. García-Cerda, M. U. Escareñoastro, M. Salazar-Zertuche, “Preparation and characterization of polyvinyl alcohol–cobalt ferrite nanocomposites,” Journal of Non-Crystalline Solids, Vol. 353, pp. 808-810, 2007.
[19] J. Mohapatra, M. Xing, J. Elkins, J. Beatty, and J. P. Liu, “Size-dependent magnetic hardening in CoFe2O4 nanoparticles: effects of surface spin canting,” Journal of Physics D: Applied Physics, Vol. 53, p. 504004, 2020.
[20] A. López-Ortega, E. Lottini, C. de Julián Fernández, and C. Sangregorio, “Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of rare-earth-free permanent magnet,” Chemistry of Materials, Vol. 27, pp. 4048–4056, 2015.
[21] J. G. Lee, J. Y. Park, and C. S. Kim, “Growth of ultra-fine cobalt ferrite particles by a sol–gel method and their magnetic properties,” Journal of Materials Science, Vol. 33, pp. 3965–3968, 1998.
[22] D. D. Andhare, S. R. Patade, J. S. Kounsalye, K. M. Jadhav, “Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method,” Physica B: Condensed Matter, Vol. 583, p. 412051, 2020.
[23] G. Allaedini, S. M. Tasirin, and P. Aminayi, “Magnetic properties of cobalt ferrite synthesized by hydrothermal method,” International Nano Letters, Vol. 5, pp. 183–186, 2015.
[24] D. Pal, M. Mandal, A. Chaudhuri, B. Das, D. Sarkar, and K. Mandal, “Micelles induced high coercivity in single domain cobalt-ferrite nanoparticles,” Journal of Applied Physics,” Vol. 108, p. 124317, 2010.
[25] T. Niizeki, Y. Utsumi, R. Aoyama, H. Yanagihara, J. Inoue et al, “Extraordinarily large perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite CoxFe3?xO4(001) (x?=?0.75, 1.0) thin films,” Applied Physics Letter, Vol. 103, p. 162407, 2013.
[26] A. Raghunathan, I. C. Nlebedim, D. C. Jiles, J. E. Snyder, “Growth of crystalline cobalt ferrite thin films at lower temperatures using pulsed-laser deposition technique,” Journal of Applied Physics, Vol. 107, p. 09A516, 2010.
[27] S. A. Chambers, R. F. C. Farrow, S. Maat, M. F. Toney, L. Folks, J. G. Catalano, T. P. Trainor, G. E. Brown Jr, “Molecular beam epitaxial growth and properties of CoFe2O4 on MgO (0 0 1),” Journal of Magnetism and Magnetic Materials, Vol. 246, pp. 124-139, 2002.
[28] A. A. Bagade, V. V. Ganbavle, S. V. Mohite, T. D. Dongale, B. B. Sinha, K. Y. Rajpure, “Assessment of structural, morphological, magnetic and gas sensing properties of CoFe2O4 thin films,” Journal of Colloid and Interface Science, Vol. 497, pp. 181-192, 2017.
[29] F. Tudorachea, P. D. Popa, M. Dobromir, F. Iacomi, “Studies on the structure and gas sensing properties of nickel–cobalt ferrite thin films prepared by spin coating,” Materials Science and Engineering B, Vol. 178, pp. 1334-1338, 2013.
[30] V. A. Jundale, D. A. Patil, G. Y. Chorage, A. A. Yadav, “Mesoporous cobalt ferrite thin film for supercapacitor applications,” Materials Today: Proceedings, Vol. 43, pp. 2711-2715, 2021.
[31] W. Hu, L. Zou, R. Chen, W. Xie, X. Chen, N. Qin, S. Li, G. Yang, and D. Bao, “Resistive switching properties and physical mechanism of cobalt ferrite thin films,” Applied Physics Letters, Vol. 104, p. 143502, 2014.
[32] A. Das, D. De, A. Ghosh, M. M. Goswami, “DNA engineered magnetically tuned cobalt ferrite for hyperthermia application,” Journal of Magnetism and Magnetic Materials, Vol. 475, pp.787-793, 2019.
[33] D. Pal, “Magnetic Nanoparticles in Various Biomedical Applications,” Journal of Advanced Scientific Research, Vol. 13, pp. 1-6, 2022.
[34] S. N. Piramanayagam, “Perpendicular recording media for hard disk drives,” Journal of Applied Physics, Vol. 102, p. 011301, 2007.
[35] R. Sbiaa, H. Meng, and S. N. Piramanayagam, “Materials with perpendicular magnetic anisotropy for magnetic random access memory,” Physica Status Solidi, Rapid Research Letters, Vol. 5, pp. 413–419, 2011.
[36] H. Yanagihara, Y. Utsumi, T. Niizeki, J. Inoue, and E. Kita, “Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films,” Journal of Applied Physics, Vol. 115, p. 17A719, 2014.
[37] H. Onoda, H. Sukegawa, E. Kita and H. Yanagihara, “Control of Magnetic Anisotropy by Lattice Distortion in Cobalt Ferrite Thin Film,” IEEE Transactions on Magnetics, Vol. 54, pp. 1-4, 2018.
[38] Y. Suzuki, G. Hu, R. B. van Dover, R. J. Cava, “Magnetic anisotropy of epitaxial cobalt ferrite thin films,” Journal of Magnetism and Magnetic Materials, Vol. 191, pp. 1-8, 1999.
[39] B. D. Cullity, “Introduction to Magnetic Material,” 2nd ed. London: Addison-Wesley; 1972.
[40] C. N. Chinnasamy, M. Senoue, B. Jeyadevan, Oscar Perales-Perez, K. Shinoda, and K. Tohji, “Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio,” Journal of Colloid and Interface Science, Vol. 263, pp. 80–83, 2003.
[41] S. Amiri, H. Shokrollahi, “The role of cobalt ferrite magnetic nanoparticles in medical science,” Materials Science and Engineering C, Vol. 33, pp. 1–8, 2013.
[42] W. S. Chiua, S. Radiman, R. Abd-Shukor, M. H. Abdullah, P. S. Khiew, “Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment,” Journal of Alloys and Compounds, Vol. 459, pp. 291–297, 2008.
[43] D. Pal, “Annealing Induced Coercivity in Cobalt-ferrite Nanoparticles Prepared by Coprecipitation Method,” International Journal of Scientific Research in Physics and Applied Sciences, Vol. 11, pp. 01-05, 2023.
[44] M. V. Limaye, S. B. Singh, S. K. Date, D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, R. J. Choudhary, S. K. Kulkarni, “High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature,” Journal of Physical Chemistry B, Vol. 113, pp. 9070–9076, 2009.
[45] B. H. Liu, J. Ding, “Strain-induced high coercivity in CoFe2O4 powders,” Journal of Physical Chemistry B, Vol. 88, p. 042506, 2006.
[46] S. Y. Srinivasan, K. M. Paknikar, D. Bodas, and V. Gajbhiye, “Applications of cobalt ferrite nanoparticles in biomedical nanotechnology,” Nanomedicine, Vol. 13, No. 10, 2018.
[47] D. Pal, D. De, A. Das, A. Chaudhuri, and M. M. Goswami, “Synthesis of Micelles Guided Co-Ferrite Particles and Their Application for AC Magnetic Field Stimulated Drud Release,” Journal of Advance Scientific Research, Vol. 11(03), pp. 170-175, 2020.
[48] P. A. Vinosha, A. Manikandan, A. Christy Preetha, A. Dinesh, Y. Slimani, M. A. Almessiere, A. Baykal, B. Xavier, and G. F. Nirmala, “Review on Recent Advances of Synthesis, Magnetic Properties, and Water Treatment Applications of Cobalt Ferrite Nanoparticles and Nanocomposites,” Journal of Superconductivity and Novel Magnetism, Vol. 34, PP. 995–1018, 2021.
[49] A. K. Gupta, and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials, Vol. 26 (18), pp. 3995-4021, 2005.
[50] S. Ge, X. Shi, K. Sun, C. Li, C. Uher, J. R. Baker Jr., M. M. B. Holl, and B. G. Orr, “Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties,” The Journal of Physical Chemistry C, Vol. 113(31), pp. 13593-13599, 2009.
[51] Y. Lee, J. Lee, C.?J. Bae, J.-G. Park, H.-J. Noh, J.-H. Park, T. Hyeon, “Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions,” Advanced Functional Materials, Vol. 15, pp. 503-509, 2005.
[52] P. Guardia, A. Labarta and X. Batlle, “Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles,” The Journal of Physical Chemistry C, Vol. 115, pp. 390–396, 2011.
[53] B. H. Liu, J. Ding, Z. L. Dong, C. B. Boothroyd, J. H. Yin, and J. B. Yi, “Microstructural evolution and its influence on the magnetic properties of CoFe2O4 powders during mechanical milling,” Physical Review B, Vol. 74, p. 184427, 2006.
[54] M. V. Limaye, S. B. Singh, S. K. Date, D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, R. J. Choudhary, and S. K. Kulkarni, “High Coercivity of Oleic Acid Capped CoFe2O4 Nanoparticles at Room Temperature,” The Journal of Physical Chemistry B, Vol. 113, pp. 9070–9076, 2009.
[55] T. Yadavalli, H. Jain, G. Chandrasekharan, R. Chennakesavulu, “Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method”, AIP Advances, Vol. 6, p. 055904, 2016.
[56] A. H. Habib, C. L. Ondeck, P. Chaudhary, M. R. Bockstaller and M. E. McHenry, “Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy,” Journal of Applied Physics, Vol. 103, p. 07A307, 2008.
[57] S. A. Hassanzadeh-Tabrizi, H. Norbakhsh, R. Pournajaf, M. Tayebi, “Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications,” Ceramics International, Vol. 47, pp. 18167-18176, 2021.
[58] J. Ding, Y. J. Chen, Y. Shi, and S. Wang, “High coercivity in SiO2-doped CoFe2O4 powders and thin films,” Applied Physics Letters, Vol. 77, pp. 3621–3623, 2000.
[59] H. Zheng, et al. “Multiferroic BaTiO3-CoFe2O4 Nanostructures.” Science (New York, N.Y.) Vol. 303, p. 5658, 2004.
[60] P. A. Vinosha, A. Manikandan, R. Ragu, A. Dinesh, K. Thanrasu, Y. Slimani, A. Baykal, B. Xavie, “Impact of nickel substitution on structure, magneto-optical, electrical and acoustical properties of cobalt ferrite nanoparticles, “Journal of Alloys and Compounds,” Vol. 857, p. 157517, 2021.
[61] S. Y. Srinivasan, K. M. Paknikar, D. Bodas, and V. Gajbhiye, “Applications of cobalt ferrite nanoparticles in biomedical nanotechnology,” Nanomedicine (Lond.), Vol. 13, No. 10, 2018.
[62] M. A. Khan, M. J. U. Rehman, K. Mahmood, I. Ali, M. N. Akhtar, G. Murtaza, I. Shakir, M. F. Warsi, “Impacts of Tb substitution at cobalt site on structural, morphological and magnetic properties of cobalt ferrites synthesized via double sintering method,” Ceramics International, Vol. 41, pp. 2286-2293, 2015.
[63] R. B. Falk, G. D. Hooper, Journal of Applied Physics, Vol. 32, p. 190S, 1961.
[64] S. Singh, A. Singh, B. C. Yadav, P. Tandon, “Synthesis, characterization, magnetic measurements and liquefied petroleum gas sensing properties of nanostructured cobalt ferrite and ferric oxide,” Materials Science in Semiconductor Processing, Vol. 23, pp. 122-135, 2014.
[65] C. Xiangfeng, J. Dongli, G. Yu, Z. Chenmou, “Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method,” Sensors and Actuators B: Chemical, Vol. 120, pp. 177-181, 2006.
[66] Z. Li and K. A. Kho, “Preparation and Properties of Coatings and Thin Films on Metal Implants,” Encyclopedia of Biomedical Engineering, Vol. 13, pp. 203-212, 2019.
[67] P. Kumar, P. Mahajan, R. Kaur, and S. Gautam, “Nanotechnology and its challenges in the food sector: a review,” Materials Today Chemistry, Vol. 17, p. 100332, 2020.
[68] D. Gheidari, M. Mehrdad, S. Maleki, and S. Hosseini, “Synthesis and potent antimicrobial activity of CoFe2O4 nanoparticles under visible light,” Heliyon, Vol. 6, p. e05058, 2020.
[69] S. Amiri and H. Shokrollahi, “Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation,” Journal of Magnetism and Magnetic Materials, Vol. 345, pp. 18-23, 2013.
[70] G. Dascalu, T. Popescu, M. Feder, O. F. Caltun, “Structural, electric and magnetic properties of CoFe1.8RE0.2O4 (RE=Dy, Gd, La) bulk materials,” Journal of Magnetism and Magnetic Materials, Vol. 333, pp. 69-74, 2013.
[71] Mohd. Hashim, M. Raghasudha, S. S. Meena, J. Shah et al, “Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 449, pp. 319-327, 2018.
[72] A. K. Nikumbh, R. A. Pawar, D. V. Nighot, G. S. Gugale, M. D. Sangale, M. B. Khanvilkar, A. V. Nagawade, “Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method,” Journal of Magnetism and Magnetic Materials, Vol. 355, pp. 201-209, 2014.
[73] S. Fiaz, M. N. Ahmed, I. U. Haq, S. W. A. Shah , M. Waseem, “ Green synthesis of cobalt ferrite and Mn doped cobalt ferrite nanoparticles: Anticancer, antidiabetic and antibacterial studies,” Journal of trace elements in medicine and biology: organ of the Society for Minerals and Trace Elements (GMS), Vol.80, p. 127292, 2023.
[74] R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, “Magnetic and electrical properties of In doped cobalt ferrite nanoparticles,” Journal of Applied Physics, Vol. 112, p. 084321, 2012.
[75] A. S. Priya, D. Geetha, N. Kavitha, “Effect of Al substitution on the structural, electric and impedance behavior of cobalt ferrite,” Vacuum, Vol. 160, pp. 453-460, 2019.
[76] K. Wu, D. Su, J. Liu, R. Saha, and J. P. Wang, “Magnetic nanoparticles in nanomedicine: a review of recent advances,” Nanotechnology, Vol. 30, p. 502003, 2019.
[77] M. A. Medina, G. Oza, A. Ángeles-Pascual, M. M. González, R. Antaño-López, A. Vera, L. Leija, E. Reguera, L. G. Arriaga, J. M. Hernández Hernández et al, “Synthesis, Characterization and Magnetic Hyperthermia of Monodispersed Cobalt Ferrite Nanoparticles for Cancer Therapeutics,” Molecules, Vol. 25(19), pp. 4428, 2020.
[78] R. A. Bohara, N. D. Thorat, H. M. Yadav, and S. H. Pawar, “One-step synthesis of uniform and biocompatible amine functionalized cobalt ferrite nanoparticles: a potential carrier for biomedical applications,” New Journal of Chemistry, Vol. 38, pp. 2979-2986, 2014.
[79] S. M. Ansari, B. B. Sinha, K. R. Pai, S. K. Bhat, Y. R. Ma, D. Sen et al, “Controlled surface/interface structure and spin enabled superior properties and biocompatibility of cobalt ferrite nanoparticles,” Applied Surface Science, Vol. 459, pp. 788-801, 2018.
[80]M. Lickmichand, C.S. Shaji, N. Valarmathi, A. S. Benjamin, R. A. Kumar, S. Nayak, R. Saraswathy et al, “In vitro biocompatibility and hyperthermia studies on synthesized cobalt ferrite nanoparticles encapsulated with polyethylene glycol for biomedical applications,” Materials Today: Proceedings, Vol.15, pp.252–261, 2019.Citation
D. Pal, "Cobalt-ferrite Nanoparticles and Their Various Technological Applications: A Short Review," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.5, pp.25-30, 2023 -
Open Access Article
Fabrication of SnO2 doped TiO2 Metal Oxide Sensor with Ppy layer to sense CO2 Gas
B.H. Bhatti, K.B. Raulkar, G. T. Lamdhade
Research Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.5 , pp.31-36, Oct-2023
Abstract
— In this study, an optically flat glass plate was used in the development of a thick film sensor that was based on an Al2O3 substrate that was finer and more porous. The XRD pattern for the B3 sensor seems to point towards a rather tiny crystalline size.. SEM analysis was used to identify the B3 sensor`s increased porosity. As the CO2 gas concentration rises, the sensor resistance reduces at room temperature, enhancing sensitivity because surface oxygen vacancies on TiO2 and SnO2 function as donors. The sensor on an 80SnO2:20TiO2 composition with PPy as the roofing layer showed the maximum sensitivity among the constructed sensors, 0.5912 at 250 ppm, whereas it is less for other compositions.Key-Words / Index Term
SnO2, TiO2, Al2O3, Sensitivity, Thick Film, NanocompositesReferences
[1].Chunyan Li, Pil Gyu Choi, Yoshitake Masuda, “Large-lateral-area SnO2 nanosheets with a loose structure for high-performance acetone sensor at the ppt level”, Journal of Hazardous Materials Vol.455, pp.131-592, 2023.
[2].Xiaoying Kang, Nanping Deng, Zirui Yan, Yingwen Pan, Wei Sun, Yaofang Zhang, “Resistive-type VOCs and pollution gases sensor based on SnO2: A review” Materials Science in Semiconductor Processing, Vol.138, pp.106-246, 2022.
[3].Mohammad Raza Miah, Minghui Yang, Shahjalal Khandaker, M. Mahbubul Bashar, Abdul mohsen Khalaf Dhahi Alsukaibi, Hassan M.A. Hassan, Hussein Znad, Md. Rabiul Awual, “Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review” Sensors, and Actuators A: Physical, Vol.347, pp.113-933, 2022.
[4].Akram, R., Yaseen, M., Farooq, Z., Rauf, A., Al mohaimeed, Z.M., Ikram, M., Zafar, Q., “Capacitive and conductometric type dual-mode relative humidity sensor based on 5,10,15,20-tetra phenyl porphyrinato nickel (II) (TPPNi)” Polymers, Vol.13, Issue.19, pp.33-36, 2021.
[5].Dhall, S., Mehta, B.R., Tyagi, A.K., Sood, K., “A review on environmental gas sensors: materials and technologies”. Sensors International, Vol.2, pp.100-116, 2021.
[6].Yoshitake Masuda, “Recent advances in SnO2 nanostructure based gas sensors”, Sensors & Actuators: B. Chemical, Vol.364, pp.131-876, 2022.
[7].A.O. Ohiani, K.M. Omatola, A.S. Ayodele, J. Adeyemi, “Synthesis, Optical and Electrical Conductivity Characterization of Micro-thick Titanium Dioxide Thin Film Semiconductor”, Journal of Physics and Chemistry of Materials, Vol.9, Issue.3, pp.08-12, 2022.
[8].Masayuki Nagai, Tadashi Nishino and Tatsuya Saeki, "A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics", Sensors and Actuators, Vol.15, Issue.2, pp.145-151, 1988.
[9].K. B. Raulkar, “Study on sensitivity of nano SnO2 -ZnO composites with and without PPy layer for sensing CO2 gas”, Materials Today: Proceedings, Vol.15, pp.604–610, 2019.
[10].Hemant K. Chitte1, Narendra V. Bhat, Vasant E., "Synthesis of Polypyrrole Using Ferric Chloride (FeCl3) as Oxidant Together with Some Dopants for Use in Gas Sensors” Journal of Sensor Technology, Vol.1, pp.47-56, 2011.
[11].K. M. Glassford, N. Troullier, J. L. Martines and J. R. Chelikowsky, Solid State Communications, Vol.76, Issue.5, pp.635-6381, 1990.
[12].A. M. Toneje, M. Gotiae, B. Grzeta, S. Musiae, S. Popoviae, R. Trojko, A. Turkovia and I. Museviae, Materials Science and Technology B, Vol.40, pp.177-184, 1976.Citation
B.H. Bhatti, K.B. Raulkar, G. T. Lamdhade, "Fabrication of SnO2 doped TiO2 Metal Oxide Sensor with Ppy layer to sense CO2 Gas," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.5, pp.31-36, 2023 -
Open Access Article
Structural and Electronic Properties of Palladium and Palladium Doped Graphene
Sushil Karki
Research Paper | Journal-Paper (IJSRPAS)
Vol.11 , Issue.5 , pp.37-42, Oct-2023
Abstract
By using basic computational techniques, the structural and electronic properties of Palladium and Palladium doped graphene, which are sometimes difficult to measure experimentally, have been studied. As density of states plays a vital role in an analysis of physical properties of solids; thereby, we have utilized DFT in combine with general gradient approximation as implemented in the quantum espresso simulation package to study the band structure of palladium and palladium doped graphene. We found that the crystal structure of palladium in FCC (Face Centred Cubic). Our study showed that the valence and conduction band of graphene overlap each other meeting at a junction called dirac point (at Fermi level) concluding graphene a semi- metal. From the doped side of graphene, we found that, though the band structure is erratic, junction of the two curves intersect above the Fermi level (shifts by 0.7 eV). Also we found that the valence and conduction band overlap with a zero band gap making it a zero band gap semiconductor.Key-Words / Index Term
Fermi- Level, Dirac point, Zero band gap, Density Function Theory, Face centred Cubic, Generalized Gradient ApproximationReferences
[1]. J. Meija, “Atomic weights of elements 2013 [IUPAC Technical Report]. Pure and Applied Chemistry”, Vol.88, Issue.3, pp.265-91, 2016.
[2]. Hiller, “Crystallographic and Cohomology of Groups. The American Mathematical Monthly, Vol. 93(10), pp. 765-779. 1986
[3]. C. Drahl, “Palladium’s Hidden Talent. Chemical and Engineering News”, Vol.86, Issue.35, pp.53-56, 2008.
[4]. H. Wollaston, “On the Discovery of Palladium with Observations on Other Substances Found With Platina. Philosophical Transactions of the Royal Society of London”, Vol.95, pp.316-330, 1805.
[5]. S. Lamichhane, N. Pantha, N. P. Adhikari, “Hydrogen Storage on Platinum Decorated Graphene: A first-principle study. Bibechana a multidisciplinary Journal of Science, Technology and Mathematics”, Vol.11, Issue.1, pp.113-122, 2014
[6]. M. Uselman, “The controversy over the elemental nature of palladium. Annals of Science”, Vol. 35, pp.551-579, 1978
[7]. Platinum-Group Metals (PDF). “Mineral Commodity Summaries, United States, Geological Survey”, 2007
[8]. Geim, K. S. Novoselov, “ The Rise of Graphene. Nature Pysics and Condensed Matter Physics”, Vol.10, pp.1, 2011
[9]. D. Bradley, “A Chemical History of Graphene. Materials Today”, Vol.21, pp.1019-1041, 2014
[10]. F. Fudong, “Study of Band Gap. Encyclopedia Britannica”, Vol.20, pp.2-4, 2015
[11]. T. Ziegler, A. Rauk, “On the calculation of energies by the Hatree-Fock Method. Theoretica Chimica Acta”, Vol.46, pp.1-10, 1977
[12]. M. Combes, “The Born-Oppenheimer Approximation. Rigorous Atomic and Molecular Physics”, Vol.74, pp.185- 215, 1981
[13]. D. Sholl, “Density Function Theory: A Pratical Introduction. Pennsylvania”, USA: Wiley, 2009
[14]. P. John, “Generalized Gradient Approximation Made Simple. Physical Review Letters”, Vol.77, pp.3865-3868, 1996.Citation
Sushil Karki, "Structural and Electronic Properties of Palladium and Palladium Doped Graphene," International Journal of Scientific Research in Physics and Applied Sciences, Vol.11, Issue.5, pp.37-42, 2023
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.