Full Paper View Go Back

The Coriolis Effect on Spherical Particles Inside the Bowl

S. M. Raj Kumar1 , R. Malayalamurthi2

  1. Department of Mechanical Engineering, Builder Engineering College, Tirupur, India.
  2. Department of Mechanical Engineering, Government College of Technology, Coimbatore,.

Correspondence should be addressed to: kumar_tpm@yahoo.com.


Section:Research Paper, Product Type: Isroset-Journal
Vol.3 , Issue.10 , pp.1-7, Oct-2017


CrossRef-DOI:   https://doi.org/10.26438/ijsrms/v3i10.17


Online published on Oct 30, 2017


Copyright © S. M. Raj Kumar, R. Malayalamurthi . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: S. M. Raj Kumar, R. Malayalamurthi, “The Coriolis Effect on Spherical Particles Inside the Bowl,” International Journal of Scientific Research in Multidisciplinary Studies , Vol.3, Issue.10, pp.1-7, 2017.

MLA Style Citation: S. M. Raj Kumar, R. Malayalamurthi "The Coriolis Effect on Spherical Particles Inside the Bowl." International Journal of Scientific Research in Multidisciplinary Studies 3.10 (2017): 1-7.

APA Style Citation: S. M. Raj Kumar, R. Malayalamurthi, (2017). The Coriolis Effect on Spherical Particles Inside the Bowl. International Journal of Scientific Research in Multidisciplinary Studies , 3(10), 1-7.

BibTex Style Citation:
@article{Kumar_2017,
author = {S. M. Raj Kumar, R. Malayalamurthi},
title = {The Coriolis Effect on Spherical Particles Inside the Bowl},
journal = {International Journal of Scientific Research in Multidisciplinary Studies },
issue_date = {10 2017},
volume = {3},
Issue = {10},
month = {10},
year = {2017},
issn = {2347-2693},
pages = {1-7},
url = {https://www.isroset.org/journal/IJSRMS/full_paper_view.php?paper_id=466},
doi = {https://doi.org/10.26438/ijcse/v3i10.17}
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v3i10.17}
UR - https://www.isroset.org/journal/IJSRMS/full_paper_view.php?paper_id=466
TI - The Coriolis Effect on Spherical Particles Inside the Bowl
T2 - International Journal of Scientific Research in Multidisciplinary Studies
AU - S. M. Raj Kumar, R. Malayalamurthi
PY - 2017
DA - 2017/10/30
PB - IJCSE, Indore, INDIA
SP - 1-7
IS - 10
VL - 3
SN - 2347-2693
ER -

324 Views    217 Downloads    187 Downloads
  
  

Abstract :
An innovative mechanism is presented for granulation of sago particles. This study aims to express more closely the Coriolis effects in a granular medium. The results of analytical models with and without considering Coriolis force are compared and validated with the experimental results. The analytical results coincide with experimental results with average negligible error (4 - 6 %) in case of Coriolis forces are considered and with significant error (9 - 12 %) if not considered. The Coriolis force will support to the mass build up of the particles by affecting the centrifugal motion.

Key-Words / Index Term :
Bowl, Granulation, Particle, Coriolis force.

References :
[1] Edison S. Present situation and future potential of cassava in India. Central Tuber Crops Research Institute (CTCRI), India 2001; 61-70.
[2] Raj Kumar S M, Malayamurthi R, Marappan R., Rolling and bouncing dynamics of particles in the inclined rotating bowl for sago sizing mechanism. Powder Technology 2014; 267: 279–288. https://doi.org/10.1016/j.powtec.2014.07.032
[3] Anderzej Heim, Robert kazmierczak, Anderzej Obraniak. The effect of equipment and process parameters on torque during disc granulation of bentonite. Physicochemical problems of mineral processing 2004; 38: 157-166.
[4] Aphale A, Bolander N, Park J, Shaw L, Svec J, Wassgren C. Granular fertiliser particle dynamics on and off a spinner spreader. Biosystems Engineering 2003; 85(3): 319-329.
[5] Rioual F, Piron E, Tisjkens E. Rolling and sliding dynamics in centrifugal spreading. Applied Physics Letters 2007; 90(2): 021918.
[6] Grift T E, Kweon G, Hofstee J W, Piron E, Villete S. Dynamic friction coefficient measurement of granular fertilizer particles. Biosystems Engineering 2006; 95(4): 507-515.
[7] Dorel Stoica, Nicolaie Orăşanu, Andrei Craifaleanu. Conical vibrating sieve U.P.B. Sci. Bull., Series D 2011; 73(4).
[8] Shrisath S S, Padding J T, Clercx H J H, Kuipers J A M. Modeling of granular flows through inclined rotating chutes using a discrete particle model. Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 2012.
[9] Samik Nag, Vipul Mohan Koranne, Tathagata Battacharya, Uttam Singh, Somnath Basu. Mathematical simulation of material trajectory for compact bell-less top of ‘F’ blast furnace, Tata Search 2004.
[10] Rioual F, Le Quiniou A, Lapusta Y. The rolling transition in a granular flow along a rotating wall. Materials 2011; 4: 2003-2016.
[11] Rioual F. A model for the threshold of the rolling transition. Technische Mechanik 2012; 32: 530 – 534.
[12] Dorbolo S, Scheller T, Ludewig F, Lumay G, Vandewalle N. Influence of a reduced gravity on the volume fraction of a monolayer of spherical grains. Physical Review E 2011; 84: 041305-1- 6.
[13] Dintwa E, Van Liedekerke P, Tijskens E, Ramon H. Model for simulation of particle flow on a centrifugal fertilizer spreader. Biosystems Engineering 2004; 87(4): 407-415.
[14] Kweon G, Grift T E, Miclet D. A spinning-tube device for dynamic friction coefficient measurement of granular fertiliser particles. Biosystems Engineering 2007; 97: 145– 152.
[15] Warnett J M, Denissenko P, Thomas P J, Williams M A. Collapse of a granular column under rotation. Powder Technology 2014: 262: 249–256.
[16] Zoueshtiagh F, Thomas P J. Wavelength scaling of spiral patterns formed by granular media underneath a rotating fluid. Physical review E 2000; 61(5): 5588 – 5592.
[17] Thomas P J, Zoueshtiagh F. Granular ripples under rotating flow: a new experimental technique for studying ripples in non-rotating, geophysical applications. Phil. Trans. R. Soc. A 2005; 363: 1663–1676.
[18] Paul Van Liedekerke. Study of the granular fertilizers and the centrifugal spreader using Discrete Element Method (DEM) simulations. PhD Thesis 2007.
[19] Basu U, Choudhury M, Bhattacharyya R K. Wave propagation in a rotating randomly varying generalized granular thermo elastic medium. 11th International conference on vibration problems, Z. Dimitrovová et al. (eds.) Lisbon, Portugal 2013: 9-12.
[20] Manuel Feliz J ­ Teixeira. Apparently Deriving Fictitious Forces Centrifugal, Coriolis and Euler forces. Their meaning and their mathematical derivation, http://www.fe.up.pt/~feliz and you tube and registered with the Portuguese Society of Authors 2011.
[21] Rajesh Agrawal, Yadav Naveen. Pharmaceutical processing – A review on wet granulation technology. International Journal of Pharmaceutical Frontier Research 2011; 1(1): 65-83.
[22] Wanassanan Chansataporn, Montira Nopharatana. Effects of binder content and drum filling degree on cassava pearl granulation using drum granulator. Asian journal of Food and Agro-Industry 2009; 2(04): 739-748.
[23] Raj Kumar S M, Malayamurthi R. Agglomeration and sizing of rolling particles in the sago sizing mechanism, Powder Technology, Volume 320, October 2017, Pages 428-444. https://doi.org/10.1016/j.powtec.2017.07.066

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation