References
[1] B. E. Logan, K. Rabaey, “Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies”, Science, Vol.337, No.6095, p.686−690, 2012.
[2] B. E. Logan, M. Elimelech, “Membrane-based processes for sustainable power generation using water”, Nature, Vol.488, No.7411, pp.313–319, 2012.
[3] M. H. Do, H. H. Ngo, W. S. Guo, Y. Liu, S. W. Chang, D. D. Nguyen, L. D. Nghiem, and B. J. Ni, “Challenges in the application of microbial fuel cells to wastewater treatment and energy production : A mini review”, Science of the Total Environment, Vol.639, pp. 910–920, 2018.
[4] S. Chaudhuri, D. Lovley, “Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells”, Nat. Biotechnol., Vol.21, No.10, pp.1229, 2003.
[5] Y. Qu, Y. Feng, X. Wang, and B. E. Logan, “Use of a coculture to enable current production by Geobacter sulfurreducens”, Appl. Environ. Microbiol., Vol.78, No.9, pp.3484–3487, 2012.
[6] O. Adelaja, T. Keshavarz, and G. Kyazze, “Enhanced biodegradation of phenanthrene using different inoculum types in a microbial fuel cell ”, Eng. Life Sci., Vol.14, No.2, pp.218–228, 2014.
[7] M. Li, M. Zhou, X. Tian, C. Tan, C. T. Mcdaniel, D. J. Hassett, and T. Gu, “Microbial fuel cell ( MFC ) power performance improvement through enhanced microbial electrogenicity”, Biotechnol. Adv., Vol.36, No.4, pp.1316–1327, 2018.
[8] Z. Du, H. Li, and T. Gu, “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy”, Biotechnol. Adv., Vol.25, No.5, pp.464–482, 2007.
[9] U. Schröder, “Microbial fuel cells and microbial electrochemistry: Into the next century!”, ChemSusChem, Vol.5, No.6, pp.959–961, 2012.
[10] R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, “Biofuel cells and their development”, Biosens. Bioelectron., Vol.21, No.11, pp.2015–2045, 2006.
[11] A. E. Franks, K. P. Nevin, “Microbial fuel cells, a current review”, Energies, Vol.3, No.5, pp.899–919, 2010.
[12] S. Karmakar, K. Kundu, and S. Kundu, “Design and Development of Microbial Fuel cells”, Curr. Res., pp.1029–1034, 2010.
[13] K. Rabaey, G. Lissens, S. D. Siciliano, and W. Verstraete, “A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency”, Biotechnol. Lett., Vol.25, No.18, pp. 1531–1535, 2003.
[14] H. Liu, S. Cheng, and B. E. Logan, “Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell”, Environ. Sci. Technol., Vol.39, No.2, pp.658–662, 2005.
[15] K. Rabaey, W. Verstraete, “Microbial fuel cells: Novel biotechnology for energy generation”, Trends Biotechnol., Vol.23, No.6, pp.291–298, 2005.
[16] K. Scott, C. Murano, “Microbial fuel cells utilising carbohydrates”, J. Chem. Technol. Biotechnol., Vol.82, pp.92-100, 2007.
[17] B. C. Jong, P. W. Y. Liew, M. L. Juri, B. H. Kim, A. Z. M. Dzomir, K. W. Leo, and M. R. Awang, “Performance and microbial diversity of palm oil mill effluent microbial fuel cell”, Letters in Applied Microbiology, pp.660–667, 2011.
[18] S. Ishii, B. E. Logan, and Y. Sekiguchi, “Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell”, Appl. Microbiol. Biotechnol., Vol.94, pp.1087−1094, 2012.
[19] R. Kumar, L. Singh, A. W. Zularisam, and F. I. Hai, “Microbial fuel cell is emerging as a versatile technology : a review on its possible applications , challenges and strategies to improve the performances”, Int. J. Energy Res., pp.369–394, 2018.
[20] J. R. Kim, B. Min, and B. E. Logan, “Evaluation of procedures to acclimate a microbial fuel cell for electricity production”, Appl. Microbiol. Biotechnol., Vol.68, No.1, pp.23–30, 2005.
[21] B. E. Logan, “Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments”, ChemSusChem, Vol.5, No.6, pp.988–994, 2012.
[22] H. Liu, R. Ramnarayanan and B.E. Logan, “Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell”, Environ. Sci. Technol. Vol.38, No.7, pp.2281−2285, 2004.
[23] J. E. Mink, J. P. Rojas, B. E. Logan, and M. M. Hussain, “Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance Microsized (1.25 μ L) Microbial Fuel Cell”, Nano Letters, Vol.12, pp.791−795, 2012.
[24] G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim, “Operational parameters affecting the performance of a mediator-less microbial fuel cell”, Biosens. Bioelectron., Vol. 18, pp.327–334, 2003.
[25] B. E. Logan, “Exoelectrogenic bacteria that power microbial fuel cells”, Nat. Rev. Microbiol., Vol.7, pp.375–381, 2009.
[26] B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, J. C. Biffinger, and J. M. Jones-Meehan, “High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10”, Environ. Sci. Technol., Vol.40, pp.2629-2634, 2006.
[27] F. Du, B. Xie, W. Dong, B. Jia, K. Dong, and H. Liu, “Continuous flowing membraneless microbial fuel cells with separated electrode chambers”, Bioresour. Technol., Vol.102, No.19, pp. 8914–8920, 2011.
[28] M. M. Ghangrekar and V. B. Shinde, “Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production”, Bioresour. Technol., Vol.98, No.15, pp.2879–2885, 2007.
[29] Y. Choi, E. Jung, H. Park, S. R. Paik, S. Jung, and S. Kim, “Construction of Microbial Fuel Cells Using Thermophilic Microorganisms , Bacillus licheniformis and Bacillus thermoglucosidasius”, Bioresour. Technol., Vol.25, No.6, pp.813–818, 2004.
[30] L. Ren, Y. Ahn, and B. E. Logan, “A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment”, Environ. Sci. Technol., Vol.48, pp.4199−4206, 2014.
[31] B. H. Kim, I. S. Chang, and G. M. Gadd, “Challenges in microbial fuel cell development and operation”, Appl. Microbiol. Biotechnol., Vol.76, No.3, pp.485–494, 2007.
[32] C. Chen, T. Tsai, P. Wu, S. Tsao, and Y. Huang, “ Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater”, Toxic / Hazardous Substances and Environmental Engineering, Vol.4529, No.October, 2017.
[33] M. Li, S. Zhou, Y. Xu, Z. Liu, F. Ma, L. Zhi, and X. Zhou, “Simultaneous Cr ( VI ) reduction and bioelectricity generation in a dual chamber microbial fuel cell”, Chem. Eng. J., Vol.334, No. November 2017, pp.1621–1629, 2018.
[34] X. Li, G. Liu, S. Sun, F. Ma, S. Zhou, and J. Kee, “Power generation in dual chamber microbial fuel cells using dynamic membranes as separators”, Energy Convers. Manag., Vol.165, No. March, pp.488–494, 2018.
[35] B. E. Logan and J. M. Regan, “Microbial Fuel Cells—Challenges and Applications”, Environ. Sci. Technol., Vol.40, No.17, pp.5172–5180, 2006.
[36] J. Sambrook and R.W. Russell, “Molecular cloning: A laboratory manual, 3rd ed”, Cold spring harbor laboratory press, cold spring harbor, N.Y. 2001
[37] E. Thokchom and M. C. Kalita, “Isolation , screening , characterization , and selection of superior rhizobacterial strains as bioinoculants for seedling emergence and growth promotion of Mandarin orange (Citrus reticulata Blanco)”, Can J Microbiol, Vol.60, pp.85–92., 2014.
[38] M. G. George, “Bergey’s manual of systematic bacteriology, Vol 2. The Proteobacteria: Part B the Gammaproteobacteria 2nd edn.”, Springer, New York, pp.651, 2005
[39] K. Rabaey, J. Rodríguez, L. L. Blackall, J. Keller, P. Gross, D. Batstone, W. Verstraete, and K. H. Nealson, “Microbial ecology meets electrochemistry: electricity-driven and driving communities”, ISME J., Vol.1, No.1, pp.9–18, 2007.
[40] S. Xu, H. Liu, “New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell”, J. Appl. Microbiol., Vol.111, No.5, pp.1108–1115, 2011.
[41] S. Ishii, Y. Hotta, and K. Watanabe, “Methanogenesis versus Electrogenesis: Morphological and Phylogenetic Comparisons of Microbial Communities”, Biosci. Biotechnol. Biochem., Vol.72, No.2, pp.286–294, 2008.
[42] I. A. Ieropoulos, J. Greenman, C. Melhuish, and J. Hart, “Comparative study of three types of microbial fuel cell”, Enzyme Microb. Technol., Vol.37, No.2, pp.238–245, 2005.
[43] Z.Y. Ren, T.E. Ward, J.M. Regan, “Electricity production from cellulose in a microbial
fuel cell using a defined binary culture”, Environ. Sci. Technol., Vol.41, pp.4781–4786, 2007.
[44] M. F. Tsuchiya, “Ion transport in prokaryotes”, Academic Press, San Diego, pp.327-332, 1987.
[45] S. Puig, M. Serra, M. Coma, M. Cabré, M. D. Balaguer, and J. Colprim, “Effect of pH on nutrient dynamics and electricity production using microbial fuel cells”, Bioresour. Technol., Vol.101, No. 24, pp.9594–9599, 2010.
[46] Y. Yuan, B. Zhao, S. Zhou, S. Zhong, and L. Zhuang, “Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells”, Bioresour. Technol., Vol.102, No.13, pp.6887–6891, 2011.
[47] M. Behera, M.M. Ghangrekar,“Performance of microbial fuel cells in response to change in sludge loading rate at different anodic feed pH”, Bioresour. Technol., Vol.100, pp.5114–5121, 2009.
[48] Y. Liu, V. Climent, A. Berná, and J. M. Feliu, “Effect of Temperature on the Catalytic Ability of Electrochemically Active Biofilm as Anode Catalyst in Microbial Fuel Cells”, Electroanalysis, Vol. 23, No.2, pp.387–394, 2011.
[49] U.F.J. Meeranayak, C. T. Shivasharana, “Competitive and Economically Feasible Cell Wall Disruption Techniques for Algal Biofuel Extraction”, Int. Journal of Scientific Research in Biological Sciences, Vol.5, Issue.6, pp.121-126, 2018