Volume-6 , Issue-4 , Aug 2019, ISSN 2347-7520 (Online) Go Back
-
Open Access Article
Aditi Chauhan, Sarbjit Singh Kanwar
Research Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.1-11, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.111
Abstract
Eleven potential probiotic bacteria isolated from traditional fermented foods of Western Himalaya were screened for exopolysaccharide production by using ruthenium red milk agar and 3 isolates viz. AdF1, AdF2 and AdF3 were found to be positive. The quantitative analysis of exopolysaccharide production was done by phenol sulphuric acid method where AdF3 showed highest EPS production. For optimization of exopolysaccharide production carbon source, nitrogen source, pH, temperature and incubation time were optimized by using One Variable at a Time approach (OVAT) followed by Response Surface Methodology (RSM). Lactose was found to be the best carbon source (5% for AdF1 and 6% for AdF2 & AdF3) and yeast extract as the best nitrogen source (13.82% for AdF1 and 14.51 % for AdF2 & AdF3). The optimum pH, temperature and incubation time were 6.75, 37ºC and 60 h, respectively for all the isolates. Under optimized conditions, an overall increase of 1.55, 1.37 and 1.42 folds in EPS production was observed with AdF1, AdF2 and AdF3, respectively.Key-Words / Index Term
Exopolysaccharide, Enterococcus faecium, Response surface methodologyReferences
[1] S. S. Kanwar, M. K. Gupta, C. Katoch, “Cereal based traditional alcoholic beverages of Lahaul and Spiti area of Himachal Pradesh”, Indian Journal of Traditional Knowledge, Vol.10, pp. 251-257, 2010.
[2] R. K. Singh , H. W. Chang, D. Yan, K. M. Lee, D. Ucmak, K. Wong, M. Abrouk, B. Farahnik, M. Nakamura, T. Zhu, T. Bhutani, W. Liao, “Influence of diet on the gut microbiome and implications for human health”, Journal of Translational Medicine, Vol. 15 pp.73, 2017.
[3] H. Hassanzadazar, A. Ehsani, “Phenotypic characterization of lactic acid bacteria isolated from traditional koopeh cheese”, Global Veterinaria, Vol.10 pp.148-152, 2013.
[4] S. Patel, A. Majumder, A. Goyal, “Potentials of Exopolysaccharides from lactic acid bacteria”, Indian Journal of Microbiology, Vol. 52, pp. 3-12, 2012.
[5] S. R. K. Kanamarlapudi, S. Muddada, “Characterization of Exopolysaccharide Produced by Streptococcus thermophilus CC30”, BioMed Research International, (2017) https://doi.org/10.1155/2017/4201809.
[6] E. B. Hansen , “Commercial bacterial starter cultures for fermented foods of the future”, International Journal of Food Microbiology, Vol. 78, pp. 119-131, 2002.
[7] D. Czerucka, T. Piche, P. Rampal, “Yeast as probiotics -Saccharomyces boulardii”, Aliment Pharmacology Therapy, Vol. 26, pp.767-778, 2007.
[8] S. Galle, E. K. Arendt, “Exopolysaccharides from sourdough lactic acid bacteria”, Critical Reviews in Food Science and Nutrition, Vol. 54, pp. 7, 2014.
[9] A. Patel, J. B. Prajapati, “Food and Health Applications of Exopolysaccharides produced by Lactic acid Bacteria”, Adv Dairy Res, Vol. 1, pp.107, 2013.
[10] A. Kuntiya, P. Hanmoungjai, C. Techapun, K. Sasaki, P. Seesuriyachan, “Influence of pH, sucrose concentration and agitation speed on exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as a raw material substitut, Maejo” International Journal of Science and Technology, Vol. 4, pp. 318-330, 2010.
[11] S. Jorge-Ignacio, B. Martinez, R. Guillen, R. Jimenez-Diaz, A. Rodriguez, “Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus lps26”, Applied and Environmental Microbiology, Vol. 72, pp.7495-7502, 2006.
[12] P. Ruas-Madiedo, R. C. G. de-los, “Methods for the screening, isolation and characterization of exopolysaccharides produced by lactic acid bacteria”, Journal of Dairy Scences, Vol. 88, pp.843-856, 2005.
[13] P. Sanalibaba, G. A. Cakmak, “Exopolysaccharides Production by Lactic Acid Bacteria”, Appli Micro Open Access, Vol. 2, pp.1000115, 2016.
[14] L. Jolly, S. J. Vincent, P. Duboc, J. R. Neeser, “Exploiting exopolysaccharides from lactic acid bacteria”, Antonie Van Leeuwenhoek, Vol. 82, pp. 367-374, 2002.
[15] P. Duboc, B. Mollet, “Applications of exopolysaccharides in dairy industry”, International Dairy Journal, Vol. 11, pp.759-768, 2001.
[16] S. Chabot, “Exopolysaccharides from Lactobacillus rhamnous RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells and IFN-c in mouse splenocytes”, Dairy Science and Technology, Vol. 81, pp. 683-697, 2001.
[17] P. J. Looijesteijn, J. Hugenholtz, “Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis”, Journal of Bioscience and Bioengineering, Vol. 88 pp.178-182, 1999.
[18] A. D. Welman , I. S. Maddox, “Exopolysaccharides from lactic acid bacteria: perspectives and challenges”, Trends in Biotechnology, Vol. 21, pp.269-274, 2003.
[19] H. J. Ruijssenaars , F. Stingele , S. Hartmans , “Biodegradability of food-associated extracellular polysaccharides”, Current Microbiology, Vol. 40, pp.194-199, 2000.
[20] A. Sourabh, S. S. Kanwar, P. N. Sharma, “Diversity of bacterial probiotics in traditional fermented foods of western Himalaya”, International Journal of Probiotics and Prebiotics, Vol. 5, pp.193-202, 2010.
[21] A. Khuri, S. Mukhopadhyay, “Response surface methodology”, WIREs Computational Statistics, Vol. 2, pp. 128-149, 2010.
[22] D. Mora, M. G. Fortina, C. Parini, G. Ricci, M. Gatti, G. Giraffa, P. L. Manachini, “Genetic diversity and technological properties of Streptococcus thermophilus strains isolated from dairy products”, Journal of Applied Microbiology, Vol. 93, pp. 278-287, 2002.
[23] M. Dubios, K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith, “Colorimetric method for determination of sugars and related substances”, Analytical Chemistry, Vol. 28, pp. 350-356, 1956.
[24] J. Prasanna, L. Karunamoorthy, M. Venkat Raman, S. Prashanth, D. Raj Chordia, “Optimization of process parameters of small hole dry drilling in Ti-6AI-4V using Taguchi and grey relational analysis”, Measurement, Vol. 48, pp. 346-354, 2014.
[25] L. De Vuyst, B. Degeest, “Heteropolysaccharides from lactic acid bacteria”, FEMS Microbiology Reviews, Vol. 23, pp. 153-177, 1999.
[26] A. M. Fialho , L. M. Moreira , A. T. Granja , A. O. Popescu , K.. Hoffmann , I Sa-Correia , “Occurrence, production and applications of gellan: current state and perspectives”, Applied Microbiology and Biotechnology, Vol. 79, pp. 889-900, 2008.
[27] B. H. A. Rehm, “Bacterial polymers: biosynthesis, modifications and applications”, Nature Reviews Microbiology, Vol. 8, pp. 578-592, 2010.
[28] A. S. Kumar , K. Mody , B. Jha , “Bacterial exopolysaccharides-a perception”, Journal of Basic Microbiology, Vol. 47, pp.103-117, 2007.
[29] M. Ullrich, “Bacterial Polysaccharides: Current Innovations and Future Trends”, (Caister Academic Press, UK), Inc.p 358, 2009.
[30] R. Tallon , P. Bressollier , M. C. Urdaci , “Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56”, Research in Microbiology”, Vol. 154, pp. 705-712, 2003.
[31] S. Matsumoto , T. Hara , T. Hori , K. Mitsuyama , M. Nagaoka , N. Tomiyasu , A. Suzuki , M. Sata , “Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the downregulation of pro-inflammatory cytokines in lamina propria mononuclear cells”, Clinical and Experimental Immunology, Vol. 140, pp. 417-426, 2005.
[32] A. H. El-Saggan , B. Uhrik , “Improved staining of negative binding sites with ruthenium red on cryosections of frozen cells”, General Physiology and Biophysics, Vol. 21, pp. 457-46, 2002.
[33] G. E. Gardiner, R. P. Ross, J. M. Wallace, F. P. Scanlan, P. P. Jagers, G. F. Fitzgerald, J. K. Collins, C. Stanton, “Influence of a probiotic adjunct culture of Enterococcus faecium on the quality of Cheddar cheese”, Journal of Agricultural and Food Chemistry, Vol. 47, pp. 4907-4916, 1999.
[34] G. Giraffa, “Functionality of Enterococci in dairy products”, International Journal of Food Microbiology, Vol. 88, pp. 215-222, 2003.
[35] F. Mozzi, F. Vaningelgem, E. M. Hebert, R. V. Meulen, M. R. F . Moreno, G. F. Valdez, L. D. Vuyst, “Diversity of Heteropolysaccharide-Producing Lactic Acid Bacterium Strains and Their Biopolymers”, Applied Environmental Microbiology, Vol. 72, pp. 4431-4435, 2006.
[36] P. Kanmani , K. Suganya , R.S. Kumar , N. Yuvaraj , V. Pattukumar , K. A. Paari , V. Arul , “Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish”, Applied and Biochemistry Biotechnology, Vol. 169, pp.1001-1015, 2013.
[37] X. Rihua, M. Shimin, W. Yang, L. Lisha, L. Pinglan, “Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei”, African Journal of Microbiology Research, Vol. 4, pp. 783-795, 2010.
[38] T. Sivakumar, S. Sivasankara-Narayani, T. Shankar, Vijayabaskar, “Optimization of cultural conditions for exopolysaccharides produced by Frateuria aurantia”, International Journal of Applied and Pharmaceutial Technology, Vol. 3, pp. 133-143, 2012.
[39] S. Abdulrazack, V. Velayutham, V. Thangavelu, “Medium optimization for the production of exopolysaccharide by Bacillus subtilisusing synthetic sources and agro wastes”, Turkish Journal Biology, Vol. 37, pp. 280-288, 2013.
[40] B. Ismail, M. K. Nampoothiri, “Exopolysaccharide production and prevention of syneresis in starch using encapsulated probiotic Lactobacillus plantarum”, Food Technology and Biotechnoogy, Vol. 48, pp. 484-489, 2010.
[41] P. Vijayabaskar, S. Babinastarlin, Shankar, T. Sivakumar, K. T. K. Anandapandian, “Quantification and characterization of exopolysaccharides from Bacillus subtilis (MTCC121)”, Advances in Biological Research, Vol. 5, pp. 71-76, 2011.
[42] B. Peant, La-Pointe, C. Gilbert, D. Atlan, P. Waed, D. Roy, “Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus”, Microbiology, Vol. 151, pp.1839-1851, 2005.
[43] C. Datta, P. S. Basu, “Production of extracellular polysaccharides by a Rhizobium species from root nodules of Cajanuscajan”, Acta Biotechnologica, Vol. 19, pp. 59-68, 1999.
[44] P. S. Peiris, A. M. Dlamini, H. J. Bavor, “Optimization of bioprocess conditions for exopolysaccharide production by Klebsiella oxytoca”, World Journal of Microbiologyand Biotechnology, Vol. 14 pp. 917-919, 1998.
[45] N. Habibi, S. Soleimanian-Zad, S. Z. Mohammad, “Exopolysaccharides produced by pure culture of Lactobacillus, Lactococccus and Yeast isolated from kefir grain by Microtiter Plate Assay: Optimization and comparision”, World Applied Sciences Journal, Vol. 12, 742-750, 2011.
[46] S. B. Liu , L. P. Qiao , H. L. He , Q. Zhang , X. L. Chen , W. Z. Zhou , B. C. Zhou , Y. Z. Zhang , “Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87”, PLoS One, Vol. 6, pp. 213-235, 2011.
[47] H. Hwang, S. Kim, J. Lim, J. Joo, H. Kim, H. Kim, J. Yun, “Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin-induced diabetic rats”, Life Sciences, Vol. 76, pp. 3069- 3080, 2005.
[48] S. Jeeva, T. Selva-Mohan, A. Palavesam, N. C. J. Packia-Lakshmi, J. Raja-Brindh, “Production and optimization study of a Novel Extracellular Polysaccharide by wild-type isolates Of Xanthomonas campestris”, Journal of Microbiology and Biotechnology Research, Vol. 1, pp. 175-182, 2011.
[49] J. B. Sutherland, A. L. Selby, J. P. Freeman, F. E. Evans, C. E. Cerniglia, “Metabolism of phenanthrene by Phanerochaete chrysosporium”, Applied and Environmental Microbiology, Vol. 57, pp. 113310-3316, 1991.
[50] W Crueger, A Cruegr, “Substratos para la fermentation industrial”, Journal of Dairy Research, Vol. 42, pp. 123-138, 1993.
[51] S. V. Patil , R. B. Salunkhe , C. D. Patil , D. M. Patil , B. K. Salunke , “Bioflocculant exopolysaccharide production by Azotobacter indicus using flower extract of Madhuca latifolia L”, Applied Biochemistry and Biotechnology, Vol. 162, pp. 1095-1099, 2010.
[52] C. C. Tong, K. Rajendra, “Effect of carbon and nitrogen sources on the growth and production of cellulase enzymes of a newly isolated Aspergillus sp.”, Pertanika, Vol. 15, pp. 45-50, 1992.
[53] G. Selvakumar, S. Kundu, A. D. Gupta, Y. S. Shouche, H. S. Gupta, “Isolation and characterization of non rhizobial plant growth promoting bacteria from nodules of Kudzu (Puerariathunbergiana) and their effect on wheat seedling growth”, Current Microbiology, Vol. 56, pp. 134-139, 2008.
[54] R. Gupta, P. Gigras, H. Mohapatra, V. K. Goswami, B. Chauhan, “Microbial alpha amylase: a biotechnological perspective”, Process Biochemistry, Vol. 38, pp.1599-1616, 2003.
[55] F. P. Duta, F. P. de Franca, L. L. M. de-Almeida, “Optimization of culture conditions for exopolysaccharides production in Rhizobium sp. using the Response Surface Method”, Electronic Journal of Biotechnology, Vol. 9, pp. 317-347, 2005.
[56] T. Sivakumar, S. Sivasankara-Narayani, T. Shankar, Vijayabaskar, “Optimization of cultural conditions for exopolysaccharides produced by Frateuria aurantia”, International Journal of Applied and Pharmaceutial Technology, Vol. 3, pp. 133-143, 2012.
[57] J. Muralidharan, S. Jayachandran, “Physiochemical analyses of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio aliginolyticus”, Process Biochemistry, Vol. 38, pp. 841-847, 2003.
[58] D. C. Boyle, A. E. Read, “Characterization of two extracellular polysaccharides from marine bacteria”, Applied and Environmental Microbiololgy, Vol. 46, pp. 392-399, 1983.
[59] Y. Zhang, S. Li, C. Zhang, Y. Luo, H.. Zhang, Z Yang, “Growth and exopolysaccharide production by Lactobacillus fermentum F6 in skim milk”, African Journal of Biotechnology, Vol. 10, pp. 2080-2091, 2011.
[60] J. L. U. M. Rao, T. Satyanarayana, “Statistical optimization of a high maltose forming, hyperthermostable and Ca2+ independent alpha-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology”, Journal of Applied Microbiology, Vol. 95, pp. 712-718, 2003.
[61] L. Qiang, L. Yumei, H. Sheng, L. Yingzi, S. Dongxue, H. Dake, W. Jiajia, Q. Yanhong, Z. Yuxia, “Optimization of fermentation conditions and properties of an exopolysaccharide from Klebsiella sp. H-207 and application in adsorption of hexavalent chromium”, PLoS One, Vol. 8, e53542, 2013.
[62] P. D. Haaland, “Statistical problem solving, in: Experimental design in biotechnology”, edited by Haaland P. D., (Marcel Dekker, Inc, New York), pp. 1-18, 1989.
Citation
Aditi Chauhan, Sarbjit Singh Kanwar, "Optimization of exopolysaccharide production by response surface methodology from Enterococcus faecium isolated from the fermented foods of Western Himalaya," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.1-11, 2019 -
Open Access Article
M. Bencela, S. Sudha Kumari, T.S. Parmila
Research Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.12-16, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.1216
Abstract
Ni(II) and Zn(II) metal complexes with Schiff base derived from Citral and Valine are synthesised and characterized on the basis of spectroscopic techniques (FT-IR, and UV-Visible) and magnetic susceptibility studies The IR spectral data indicated that the Schiff base coordinated to central Ni(II) and Zn(II) ions in a bridged-tridentate and bidentate fashion respectively. Magnetic moment and spectral studies suggest distorted octahedral around the Ni(II) ion and tetrahedral geomtry around Zn(II) ion. The preliminary antimicrobial activity has been evaluated against two Gram-negative bacteria; namely, Pseudomonas aeroginosa and Escherichia coli, one gram-positive bacteria Staphylococcus aureus, and antifungal activity are tested against Aspergillus sps and Candida albicans using disc diffusion method. The result revealed that Ni(II) complex exhibited potent activity when compared to Zn(II) complex and Schiff base.Key-Words / Index Term
Schiff base, Citral, valine, metal complexes, antimicrobial activityReferences
[1] S.Arulmurugan, H.P. Kavitha and B.R. Venkatraman, “Biological Activities of Schiff Base And Its Complexes,” Rasayan Journal of Chemistry, Vol.3, pp. 385-410, 2010.
[2] A.M.A-Dief and I.M.A. Mohamed, “A Review on Versatile Applications of Transition Metal Complexes Incorporating Schiff Bases,” Beni-Suef University Journal of Basic and Applied Sciences. Vol. 4, Issue. 2, pp. 119-133, 2015.
[3] C. M. D. Silva, D. L. D. Silva, L. V. Modolo, R. B. Alves, M. A. D. Resende, C.V.B. Martins, And A.D. Fatima, “Schiff Bases: A Short Review of Their Antimicrobial Activities” Journal of Advanced Research, Vol. 2, Issue. 1, pp. 1-8, 2011.
[4] T. Mallikarjun, I.V. Kasiviswanath, V. Krishna and D. Prabhakara Chary, “Synthesis And Spectral Characterization Of Antimicrobial Activity of The Binuclear Co(II), Ni(II), Cu(II) And Zn(II) Complexes of A Novel Macrocyclic Biphenyl Bridged Schiff Base Ligand”, Rasayan Journal of Chemistry, Vol. 10 , Issue.3, pp 1015 - 1024 , 2017.
[5] G.F. Qi, Z.Y. Yang and B. D. Wang, “Synthesis, Characterization And DNA-Binding Properties Of Zinc(II) And Nickel(II) Schiff Base Complexes,” Transition Metal Chemistry, Vol. 32, Issue. 2, pp.233–239, 2007.
[6] J. Vanco, J. Marek, Z. Travnicek, E. Racanska, J.Muselik, O. Svajlenova, “Synthesis, structural characterization, antiradical and antidiabetic activities of copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and β-alanine,” Journal of Inorganic Biochemistry, Vol.102, pp .595–605, 2008.
[7] J. Lv, T.Liu, S. Cai, X. Wang, L.Liu, Y. Wang, “Synthesis, Structure And Biological Activity Of Cobalt(II) And Copper(II) Complexes of Valine-Derived Schiff Bases.” Journal of Inorganic Biochemistry, Vol.100, Issue.11, pp.1888-1896, 2006.
[8] N.C. Polfer, J. Oomens, D. T. Moore, G. V. Helden, G. Meijer, and R. C. Dunba, “Infrared Spectroscopy of Phenylalanine Ag(I) and Zn(II)Complexes in the Gas Phase,” Journal of American Chemical Society,” Vol.128, pp.517-525, 2006.
[9] G.G. Mohamed, M.M. Omar, and A.A. Ibrahim, “Biological Activity Studies on Metal Complexes Of Novel Tridentate Schiff Base Ligand. Spectroscopic And Thermal Characterization”, European Journal Of Medicinal Chemistry,” Vol.44, Issue.12, pp 4801-4812, 2009.
[10] Z.R.Dai, C-F.Yin, C.Wang, and J-C.Wua, “Zinc bis-Schiff base complexes: Synthesis, structure, and application in ring-opening polymerization of rac-lactide,” Chinese Chemical Letters, Vol.27, pp. 1649–1654, 2016.
[11] M. S.Jana, A. K. Pramanik, and T.K. Mondal, “Octahedral Ni(II) and Cu(II) complexes with a new hexadentate (NSN)2 donor ligand Synthesis, characterization, X-ray structure, and DFT calculations”, Polyhedron, Vol.76, pp 29-35, 2014.
[12] S.A. Khan, S. A.A. Nami, S. A. Bhat, A.Kareem and N. Nishat, “Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)”, Microbial Pathogenesis, Vol.110, pp. 414-425, 2017.
[13] X. Qin, Y. Ji, Y. Gao, L. Yan, S.Ding, Y. Wang, and Z.Liu, Zinc(II) and Nickel(II) Complexes Based on Schiff Base Ligands: Synthesis,Crystal Structure, Luminescent and Magnetic Properties”, Journal of Inorganic and General Chemistry Vol 640, Issue2, pp 462-468, 2014.
[14] A. Stasch, Synthesis, Structure, And Reactivity of A Dimeric Zinc(I) CompoundStabilized By A Sterically Demanding Diiminophosphinate Ligand” Chemistry A European Journal, Vol 18, pp 15105-15112, 2012.
[15] B.K.A. Salami, R. A. Gata and K. A.Asker, “Synthesis Spectral, Thermal Stability and Bacterial Activity of Schiff Bases Derived From Selective Amino Acid and Their Complexes” Advances in Applied Science Research, Vol 8, Issue 3, pp:4-12, 2017.
[16] A. Patra , G P. Sahoo , P. Setua , A. Pandey , and S. Maiti, “Synthesis and characterization of Cadmium(II) complex with tetradentate N2O2- donor Schiff base and biological activity” International Journal of Scientific Research in Biological Sciences,Vol.6, Issue.1, pp:270-274, 2019.
Citation
M. Bencela, S. Sudha Kumari, T.S. Parmila, "Investigation on Antimicrobial Activity of Nickel(II) and Zinc(II) Complexes with Schiff Base Derived from Aminoacid Valine With Citral: Synthesis, Spectroscopic Analysis," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.12-16, 2019 -
Open Access Article
Vadivalagan A, Kannan. R, V. Balasubramaniam
Research Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.17-21, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.1721
Abstract
Andrographis serpyllifolia (Rottler ex Vahl) Wight, belonging to Acanthaceae family known for its ethnobotanical importance and possess anti- venom potential especially for snake and scorpion bites. The present study is focused to evaluate the phytochemical profiles and antimicrobial activity A. serpyllifolia using petroleum ether, acetone and methanol solvents. The results revealed that presence of alkaloids, flavonoids, saponins, phenols, steroids, glycosides, tannins and resins in various extracts studied. Antibacterial activity of A. serpyllifolia against Gram negative bacterial strains Serratia marcescens and Escherichia coli showed 6 mm and 9 mm zone of inhibition respectively in 50% concentration of extracts studied. Antifungal activity of petroleum ether extract showed highest zone of inhibition (11 mm) against Penicillium notatum and Fusarium oxysporum at 100% concentration.Key-Words / Index Term
Andrographis serpyllifolia, phytochemical screening and anti-microbial activityReferences
[1]. WHO. Legal Status of Traditional Medicine and Complementary/Alternative medicine: A world wide review. WHO Publishing, 2001.
[2]. J. Hussain, A.L. Khan, N. Rehman, M. Hamayun, Z.K. Shinwari, W. Ullah, I.J. Lee, “Assessment of herbal products and their composite medicinal plants through proximate and micronutrients analyses”, Journal of Medicinal Plants Research, Vol.3,Issue.12, pp. 1072-1077, 2009.
[3]. Fazal, N. Ahmad, B.H. Abbasi, N. Abbass, “Selected medicinal plants used in herbal industries; their toxicity against pathogenic microoraganisms”, Pak. J. Bot., Vol.44, Issue. 3, pp. 1103-1109, 2012.
[4]. S.K. Jain, “Glimpses of Indian Ethno botany. Oxford & IBH Publishing Co., New Delhi, India, 1981.
[5]. S. Krishnaswamy, B.A. Kushalappa, “Systematic Review of Andrographis serpyllifolia (Rottler ex Vahl) Wight: An Ethno-pharmaco-botanical Perspective. Pharmacog J. Vol.10, Issue.6, Suppl., pp.S14-S26, 2018.
[6]. P. Samydurai, A. Rajendran, A. Sarvalingam, C. Rajasekar, “Ethnobotanical knowledge of threatened plant species of Andrographis in Nilgiris Biosphere Reserve, Tamilnadu, India”, International Journal of Herbal medicine, Vol.5, Issue.6, pp.103-107, 2017.
[7]. M.G. Panduranga, K.B. Chandrasekhar, B.C. Leelaja, S. Lokesh, “Antimicrobial and Antioxidant Activities of Tribal Medicine formulation (TMF) accomplished for Wound related remedies in Biligirirangana Hill area of Chamarajanagara district, Karnataka (India), IJPC., Vol.5, Issue.8, pp.260-276, 2015.
[8]. C. Alageshaboopathi, “Ethnobotanical Studies on useful Plants of Kanjamalai Hills of Salem district of Tamil Nadu, Southern India”, Archives of Applied Science Research, Vol. 3, Issue.5, pp.532-539, 2011.
[9]. J.B. Harborne, “Phytochemical Methods, Chapman and Hall, Ltd”., London, pp. 49-188.1973
[10]. A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, “Antibiotic susceptibility testing
[11]. by a standardized single disk method”, Amer. I. C/in. Pathol., Vol.45, pp.493-6,1966.
[12]. [Depts. Microbiology and Medicine, Univ. Washington, Sch. Med., Seattle. WAI]
[13]. K. Narasimhamurthy, “Phytochemical screening and In vitro assessment of antimicrobial and antioxidant potential of Andrographis serpyllifolia - An endemic medicinal plant from South India”, International Journal of Advanced Research, Vol.2, Issue.2, pp. 917-928, 2014.
[14]. R.J.B.A. Ravishankar, V.S. Pradeepa, “Evaluation of the antimicrobial activity of three medicinal plants of South India”, Malaysian Journal of Microbiology, Vol.7, Issue. 1,pp.14-21.2011
[15]. Y. Xu, R.L. Marshall, T.K.S. Mukkur, “An investigation on the antimicrobial activity of Andrographis paniculata extracts and Andrographolide in vitro”, Asian. J. Plant. Sci., Vol.5, pp.527–530. 2006
[16]. C. Alagesaboopathi, “Screening of antibacterial potential of leaves and stem extracts of Andrographis serpyllifolia (Vahl) Wight – An endemic medicinal plant of India”, Journal of Pharmacy Research, Vol.5, Issue 12, pp. 5404-5407, 2012.Citation
Vadivalagan A, Kannan. R, V. Balasubramaniam, "Preliminary Phytochemical Analysis And Antimicrobial Activty Of Andrographis Serphyllifolia- (Rottler ex Vahl) Wight: Acanthaceae," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.17-21, 2019 -
Open Access Article
Ajitha S. Nair, Aparna V. Dubhashi
Research Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.22-28, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.2228
Abstract
This work encompasses the use of a sporulating probiotic culture, Brevibacillus borstelensis, to prepare a nutraceutical product with a mixed fruit juice as a carrier for the culture. Lyophilization of the formulation was carried out using different dehydrating agents, pectin, ascorbic acid, gelatin, gum Arabic and maltodextrin in specific permissible concentrations. Pectin gave the best results in terms of consistency and appearance of the nutraceutical powder, hence was used in the final formulation. The nutraceutical powder was then analysed for its shelf life, physical, chemical and nutritional profile. It was also tested for heavy metal contaminants, antibacterial activity and cholesterol reduction capability. Microbiological safety of the formulation was verified according to FSSAI manual. Encouraging results were obtained from the analyses. Lyophilization helped retain the nutrients of the fruits as well as improved the keeping quality of the formulation. The novel probiotic containing nutraceutical powder prepared could be helpful to lactose intolerant population. Its cholesterol reduction property could be beneficial to hypercholesteraemic individuals.Key-Words / Index Term
Nutraceutical, probiotic, Brevibacillus borstelensis, mixed fruit juice, cholesterol reductionReferences
[1]. E. K. Kalra, “Nutraceutical-definition and introduction,” AAPS Pharm Sci, vol. 5, no. 3, pp. 27–28, 2003.
[2]. R. K. Keservani, R. K. Kesharwani, N. Vyas, S. Jain, R. Raghuvanshi, and A. K. Sharma, “Nutraceutical and functional food as future food: a review,” Der Pharmacia Lettre, vol. 2, pp. 106–116, 2010
[3]. R. P. Singh, K. N. C. Murthy, and G. K. Jayaprakasha, “Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models,” Journal of Agricultural and Food Chemistry, vol. 50, no. 1, pp. 81–86, 2002
[4]. J. S. Jurenka, “Therapeutic application of pomegranate (Prunus granatum L.) A review.” Alternative Medicine Review. 13 (2): 128-144, 2008.
[5]. S. M. D Khan, V. Ravikumar, and K. Neelima,. “Pharmacological intervention of the fruit of plant Ananas comosus acting as wound healing agent in various animal models International.” Journal of Pharmacy and Technology. 3 (1): 1807-1824, 2011
[6]. J.T. Peterson, Dwyer, G.R. Beecher, Bhagwat, S.E. Gabhardt, S.E. Haytowitz, J.M Holden. “Flavanones in oranges, tangerines (mandarins), tangors and tangelos: A compilation and review of the data from the analytical literature.” J. Food Compos. Anal.;19:S66–S73. doi: 10.1016/j.jfca.2005.12., 2006
[7]. L. G. Marques, M. C. Ferreira, J. T. Freire, “Freeze-Drying of Acerola (Malpighia glabra L.)”. Chemical Engineering and Processing, v. 46, n. 5, p. 451-457, 2007
[8]. M. Fazaeli, Z. Emam-Djomeh, Ashtari, M. Omid “Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder.” Food and Bioproducts Processing 90: 667-675, 2012
[9]. N Shofian, Hamid, A. Osman , N. Saari , F. Anwar , M. Pak Dek ,M. Hairuddin “Effect of Freeze Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits”. Int. J. Mol. Sci. 12 (7); 4678-4692, 2011
[10]. J.Z. Xiao, S. Kondo, N. Takahashi, et al. “Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers.” Journal of Dairy Science. 2003;86(7):2452–2461.
[11]. J. W. Anderson, S. E. Gilliland. “Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans.” Journal of the American College of Nutrition.;18(1):43–50, 1999
[12]. M. E. Sanders “Evidence that Probiotics can Improve Cholesterol Levels.” California Dairy Research Foundation, Feb 2018
[13]. A. S. Nair, A. V. Dubhashi “In-vitro Transit Tolerance of Probiotic Bacillus species in Human Gastrointestinal Tract” International Journal of Science and Research (IJSR) Volume 5 Issue 6, 1899-1902, June 2016
[14]. R.C. Ray & P.S. Sivakumar “Traditional and novel fermented foods and beverages from tropical root and tuber crops: review.” International Journal of Food Science & Technology, 44(6), 1073−1087, 2009
[15]. B. Pakbin, S.H. Razavi, ; R Mahmoudi,P. Gajarbeygi, “Producing Probiotic Peach Juice”. Biotechnol. Health Sci.2014, 1, 1–5.
[16]. De Souza Neves Ellendersen, L.; Granato, D.; K.B Guergoletto, G. Wosiacki. “Development and sensory profile of a probiotic beverage from apple fermented with Lactobacillus casei.” Eng. Life Sci. 12, 475–485. 2012
[17]. A.L.F. Pereira, T.C. Maciel,; S. Rodrigues, “Probiotic beverage from cashew apple juice fermented with Lactobacillus casei.” Food Res. Int., 44, 1276–1283. 2011
[18]. R.D.C.S. Ranadheera, , S.K. Baines, and M.C. Adams. Importance of food in probiotic efficacy. Food Res. Int. 43: 1–7., 2010.
[19]. K. K. Kondepudi, & N. Sharma, & N. Gupta . “Screening of Ethnic Indian Fermented Foods for Effective Phytase Producing Lactic Acid Bacteria for Application in Dephytinization of Phytate Rich Foods.” International Journal of Scientific Research. 6. 1-7. 10.26438/ijsrbs/v6i2.17, 2019
[20]. C. Perez, M. Paul and P. Bazerque, “An antibiotic assay by the agar well diffusion method”, Acta Biol. Med. Exp., 15, 113–115, 1990
[21]. A. L. Cavalcanti, K. F. Oliveira, P. S. Paiva, M.V.D. Rabelo, S.K.P. Costa, FF Vieira. “Determination of total soluble solids (Brix) and pH in milk drinks and industrialized fruit juices”. Pesq Bras Odontoped Clin Integr; 6:57-64., 2006
[22]. Hunter, S. Richard, and Harold, W.Richard; The Measurement of Appearance, 2nd ed., John Wiley and Sons, Inc. New York, NY USA, 1987
[23]. FSSAI Manual of Methods of Analysis of Foods, Microbiological Testing, Vol 14, 2012
[24]. Meera, Sajag Ved and S. Ajay Vino. “Development of Value Added Probiotic Freeze-Dried Papaya Juice Powder” Journal of Food Product Development And Packaging Volume 3 Pages 01-11, 2016
[25]. A.Y. Tamine and RK. Robinson. Yogurt: Science and Technology. CRC Press, New York: NY, 2007
[26]. S. Summer, The Ins & Outs of Pectin, 05.02.16 Nutraceuticals World
[27]. C. Stanton , C. Desmond M. Coakley , JK Collins, G. Fitzerand , RP, Ross . Challenges facing development of probiotic containing functional foods. In: Franworth, E.R. (Ed.), Handbook of Fermented Functional Foods. CRC Press, Boca Raton, USA, pp. 27–58, 2003
[28]. D.S, Chavan. M.D: “Studies on antimicrobial activty and phytochemical analysis of citrus fruit juices against selected enteric pathogens”. International Research Journal of Pharmacy.; 3(11). 2012
[29]. Sara Jelodarain, A.H. Ebrahimanbadi, F.J. Kashi: “Evaluation of antimicrobial activity of Malus domestica fruit extract from Kashan area.” Avicenna Journal of Phytomedicine.; 3(1), 2013
[30]. S. Kote , S. Kote , L. Nagesh . “Effect of Pomegranate Juice on Dental Plaque Microorganisms (Streptococci and Lactobacilli).” Ancient Science of Life. 31(2):49-51. 2011
[31]. R Volpe, G. Sotis . “Nutraceuticals: definition and epidemiological rationale for their use in clinical practice.” High Blood Pres Cardiovasc Prev 22: 199–201, 2015
[32]. M. E. Doyle and K. Glass. “Spores of Clostridium botulinum in Dried Dairy Products,” Food Research Institute, 2013.
[33]. C. K. Sahni, D.S. .Khurdiya “Physicochemical changes during ripening in ‘Dashehari’ ‘Chausa’ ‘Neelum’ and ‘Amrapali’ mango.” Indian Food Packer, 5-10. 1989
[34]. R. J. Bhardwaj,, and S. Pandey.. “Juice blends-a way of utilization of under-utilized fruits, vegetables, and spices: a review”. Crit. Rev. Food Sci. Nutr. 51:563–570, 2011
[35]. Vinnie Hebert, Brookfield Ametek “Tracking Bulk Density to Maximize Tablet Production.,” Tablets and Capsules, March 2016
[36]. EU Commission Regulation EC No. 629/2008
[37]. M. L. Jones, C.J. Martoni, M. Parent, and S. Prakash. “Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults.” Br. J. Nutr. 107, 1505–1513, 2012
[38]. M. A Fradi, M.. Drissa, Cheour, I. Meddeb, H. Drissa “Coronary atherosclerosis and familial hypercholesterolemia: A case report” Tunis. Med., 86, pp. 200-202, 2008m
Citation
Ajitha S. Nair, Aparna V. Dubhashi, "Novel Fruit Juice Based Nutraceutical Formulation with Probiotic and Cholesterol Reduction Properties," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.22-28, 2019 -
Open Access Article
K. Abdul Jaleel, S.M. Ghosh, V. Jiji Joseph
Research Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.29-32, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.2932
Abstract
All Severe incidence of banana leaf roller Erionota spp. has been noticed in banana plantations of Malabar region of Kerala a part of Western Ghat, India. It is currently proposed that banana defoliater E. thrax and E. torus occur together in Kerala and many researchers have treated them as a single species. At present there is no published information regarding whether, one or both the species of Erionota coexist during the occasional outbreak of banana skipper in Kerala.Also it is unknown whether in the field the associated parasitoids attack both species ,equally or showed some preference for one or the other .This information is essential for the implementation of effective biological control programmes against this pest. Since the early stages of E. thrax and E. torus cannot be distinguished easily , and as they are common pests of banana, morphological identification of species is difficult. The present study is aimed to confirm the Erionota species from Malabar region of Kerala by using a molecular genetic approach. We sequenced the partial mitochondrial cytochrome oxidase I gene sequence (COI ) having 650 base pair DNA from specimens collected from selected localities of Malabar region of Kerala ,India. The COI sequences of the banana skipper supported the existence of E.torus species in the infested areas and all the parasitoid species collected during the course of study where that of E.torus .Key-Words / Index Term
Erionota torus,Erionota thrax,COX I,DNA barcoding ,Musa sppReferences
[1] S.C Nelson, C.Randy . Ploetz, and Angela Kay Kepler, “Banana and plantain—an overview with emphasison Pacific island cultivars”,Species Profiles for Pacific Island Agroforestry.Vol. 2,Issue.2,pp.167-181, 2006.
[2] D Mohapatra, Sabyasachi Mishra and Namrata Sutar. “Banana and its by-product utilisation: an overview”,Journal of Scientific & Industrial Research,Vol. 69, pp. 323-329,2010
[3] W.Tinzaara, C.S.Gold . (2008) Banana Pests and Their Management. In: Capinera J.L. (eds) Encyclopedia of Entomology. Springer, Dordrecht pp.2,2008.
[4] K.C.Soumya , T.V.Sajeev, T.K.Maneetha, Keerthy Vijayan and George Mathew.Incidence of “Erionotathrax(Hübner) (Lepidoptera:Hesperiidae) as a pest of banana in Kerala”. Entomon Vol. 38, Issue.1, pp.53-58, 2013.
[5] T. Sivakumar ,T.Jiji and N.Anitha,, “Field observations on banana skipper ErionotathraxL. (Hesperiidae: Lepidoptera) and its avian predators from southern peninsular India”, Current Biotica, Vol. 3, Issue.8, pp.220-227, 2014.
[6] M.J.Cock,(2015). “A critical review of the literature on the pest Erionota spp. (Lepidoptera, Hesperiidae): taxonomy, distribution, food plants, early stages, natural enemies and biological control”. CAB Reviews, Vol. 10, Issue.7, pp.1-30, 2015.
[7] Raju, D., K. Kunte, S. Kalesh, V. K. Chandrashekaran, Manoj P, H. Ogale& R. Sanap. 2018. “Erionota torus Evans, 1941 – Rounded Palm-redeye”, Butterflies of India, Vol. 2, Issue.56, 2018.
[8] P.D.N. Hebert , A.Cywinska A, S.L.Ball , J.R.deWaard . “Biological identifications through DNA barcodes”. Proceedings of the Royal Society of London B—Biological Sciences. Vol.270,Issue.1512,pp313–321,2003.
[9] Lou M, Golding GB. (2010) “Assigning sequences to species in the absence of large interspecific differences”, Molecular Phylogenetics and Evolution,Volume 56, Issue 1:pp187–194,2010.
[10] S. D.H.Janzen , W.Hallwachs and P.Blandin P “Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity”, Molecular Ecology Resources. Vol. 9, Issue.1, pp.1-26, 2009.
[11] G.T. Behere, D.Russell , P.Batterham and W.T. Tay , “Two species into one: Bottleneck history of Helicoverpazeafrom Helicoverpaarmigera revealed by DNA barcoding”, Journal of Insect Science. Volume 7,Issue 1,2007.
[12] S.K.Jalali,R.Ojha and T.Venkatesan (2015) . “DNA barcoding for identification of agriculturally important insects.In New Horizons in Insect Science : Towards sustainable Pest management” .Springer India, pp.13-23, 2015.
[13] M.J.Cock,(2015). “A critical review of the literature on the pest Erionota spp. (Lepidoptera, Hesperiidae): taxonomy, distribution, food plants, early stages, natural enemies and biological control”. CAB Reviews, Vol. 10, Issue.7, pp.4, 2015.
[14] R.Honey and J.Scooble“Linnaeus’s butterflies (Lepidoptera: Papilionoidea and Hesperioidea)”,Zoological Journal of the Linnean Society ,pp 386–387, (2001),.
Citation
K. Abdul Jaleel, S.M. Ghosh, V. Jiji Joseph, "DNA barcoding and evolutionary lineage of banana skipper Erionota torus (Evans) (Lepidoptera: Hesperiidae) from Malabar, a part of Southern WesternGhats, India," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.29-32, 2019 -
Open Access Article
Influence of Organic Derivatives on Direct Regeneration of finger millet genotype CO 9
G. Atul Babu, R. Ravindhran
Research Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.33-42, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.3342
Abstract
Finger millet (Eleusine coracana (L.) Gaertn.) is a commercially important food crop extensively cultivated in the arid and semi-arid tropical regions of India and East Africa. The current study was designed to develop an efficient protocol for micropropagation by the influence of additives to enhance the number of shoots per explant from Shoot Apical Meristems (SAMs) of finger millet genotype CO 9. The highest shoot regeneration frequency (95.89%) with an average of 46.52 shoots per explant and 10.86 cm shoot length per explant was achieved when SAMs were cultured in Shoot Regeneration Medium (SRM) containing Murashige and Skoog’s (MS) medium supplemented with 3.0 mg/L 6-Benzyl Amino Purine (BAP), 2.0 mg/L Kinetin and 5% coconut water, 300 mg/L proline and 400 mg/L casein enzymatic hydrolysate, and 3 mg/L glycine. Sub-culturing the SAMs in SRM at 2 weeks interval for 8 weeks resulted in an increase in the number of shoots per explant. The highest rooting frequency (100%) with an average root length of 7.32 cm was obtained on full-strength MS medium supplemented with 0.25 mg/L IAA. and successfully acclimated in the field, subsequently developed into fertile plants. Thus, the procedure described is a rapid and consistent method useful for efficient large-scale propagation and genetic transformation in finger millet.Key-Words / Index Term
Eleusine coracana, shoot apical meristems, Shoot Regeneration Medium, Random amplified polymorphic DNAReferences
[1]. B.N. Sastri, “the wealth of india: a dictionary of indian raw materials and industrial products”, Vol. III (D-E), Publication and Information Directorate. CSIR, New Delhi, pp. 160–166, 1989.
[2]. M.M. O’Kennedy, J.T. Burger, F.C. Botha “Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase”, Vol. 22, Issue.7. Plant Cell Reports pp.684–690, 2004.
[3]. M.M. O’Kennedy, B.G. Crampton, M. Lorito, E. Chakauya, W.A. Breese, J.T. Burger, “Expression of a β-1,3- glucanase from a biocontrol fungus in transgenic pearl millet”, South African Journal of Botany, Vol. 77, Issue 2, pp.335–345, 2011.
[4]. A.M. Latha, K.V. Rao, V.D. Reddy, “Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn)”, Plant Science, Vol. 169, Issue. 4, pp. 657–667, 2005.
[5]. A. Pande, S. Dosad, H.S. Chawla, S. Arora, “In vitro organogenesis and plant regeneration from seed-derived callus cultures of finger millet (Eleusine coracana)”, Brazilian Journal of Botany, Vol. 38,pp.19–23,2015.
[6]. S.Plaza-Wuthrich, Z.Tadele, “Millet improvement through regeneration and transformation. Biotechnology and Molecular Biology Review”, Vol 7, pp.48–61, 2012.
[7]. S.A. Ceasar, S. Ignacimuthu, “Genetic engineering of millets: current status and future prospects”, Biotechnology Letter vol. 31 pp.779–788, 2009.
[8]. T.S. Rangan, “Growth and plantlet regeneration in tissue cultures of some Indian millets: Paspalum scrobiculatum L., Eleusine coracana Gaertn. And Pennisetum typhoideum” Pers. Zeitschrift für Pflanzenphysiologie vol, 78, pp.208–216, 1976.
[9]. B.D. Mohanty, S.D. Gupta, P.D. Ghosh, “Callus initiation and plant regeneration in ragi (Eleusine coracana Gaertn.)”. Plant Cell Tissue Organ Culture Vol.5, Issue. 1, pp.47–150. 1985.
[10]. L. George, S. Eapen, “High frequency plant-regeneration through direct shoot development and somatic embryogenesis from immature inflorescence cultures of finger millet (Eleusine coracana Gaertn)”. Euphytica Vol.48, pp.269–274, 1990
[11]. S. Kumar, K. Agarwal, S.L. Kothari, “In vitro induction and enlargement of apical domes and formation of multiple shoots in finger millet, Eleusine coracana (L.) Gaertn and crowfoot grass, Eleusine indica (L.) Gaertn”. Current Science, Vol.81, pp.1482–1485, 2001
[12]. J.Pius, S. Eapen, L. George, P.S. Rao, and R.S. Raut, “Performance of plants regenerated through somatic embryogenesis in finger millet (Eleusine coracana Gaertn.),” Tropical Agricultural Research and Extention,Vol 2, pp. 87–90, 1999.
[13]. P. Gupta, S. Raghuvanshi, A.K. Tyagi, “Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli”,. Plant Biotech, Vol.18, pp.275–282, 2001.
[14]. N. Nethra, R. Gowda, P.H.R. Gowda, “Influence of culture medium on callus proliferation and morphogenesis in finger millet. In: Tadele, Z. (Ed.)”, New approaches to plant breeding of orphan crops in Africa. In Proceedings of an International Conference, September 19–21, 2007. Bern, Switzerland. Univ. Bern. pp. 167–178, 2009.
[15]. R. Hema, R.S. Vemanna, S. Sreeramulu, C.P. Reddy, M.S. Kumar, M. Udayakumar, “Stable expression of mtlD gene imparts multiple stress tolerance in Finger millet”,. PLoS One, 2014.
[16]. S. Dosad, H.S. Chawla, “In vitro plant regeneration from mature seeds of finger millet (Eleusine coracana) through somatic embryogenesis”, Indian Journal of Plant Physiology, Vol.20, pp.360–367, 2015.
[17]. S.A. Ceasar, S. Ignacimuthu, “Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.)”, In Vitro Cellular &Development Biology – Plant Vol. 44, pp.427–435, 2008.
[18]. L. Satish, S.A. Ceasar, J. Shilpha, A.S. Rency, P. Rathinapriya, M. Ramesh, “Direct plant regeneration from in vitro derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.)”, In Vitro Cellular &Development Biology – Plant, Vol.51, pp.192–200, 2015.
[19]. D.T. Nhut, B.V. Le, K.T.T. Van, “Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) Using thin cell layer culture of apical meristematic tissue”, Journal Plant Physiology, Vol.157, pp. 559–565, 2000.
[20]. P. Lakshmanan, R.J Geijskes, L. Wang, A. Elliott, C.P.L. Grof, N. Berding, G.R. Smith, “Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture”, Plant Cell Reports,Vol. 25, pp. 1007–1015, 2006.
[21]. M. Dey, S. Bakshi, G. Galiba, L. Sahoo, S.K. Panda, “Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ,”. 3 Biotech, Vol. 2, pp.233–240, 2012.
[22]. M. Labra, C. Savini, M. Bracale, N. Pelucchi, L. Colombo, M. Bardini, F. Sala, “Genomic changes in transgenic rice (Oryza sativa L.) Plants produced by infecting calli with Agrobacterium tumefaciens”, Plant Cell Reports, Vol. 20, pp.325–330, 2001.
[23]. S. Arockiasamy, S. Ignacimuthu, “Regeneration of transgenic plants from two indica rice (Oryza sativa L.) Cultivars using shoot apex explants”, Plant Cell Reports, Vol.26, pp.1745–1753, 2007.
[24]. M.B. Sticklen, H.F. Oraby, “Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops”, In Vitro Cellular &Development Biology – Plant, Vol.41, pp.187–200, 2005.
[25]. A. Ahmad, H. Zhong, W. Wang, M.B, “Sticklen Shoot apical meristem: In vitro regeneration and morphogenesis in wheat (Triticum aestivum L.)”, In Vitro Cellular &Development Biology – Plant, Vol. 38, pp.163–167, 2002.
[26]. H Zhong, C Srinivasan, MB Sticklen, “In vitro morphogenesis of corn (Zea mays L.). I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips”, Vol.187, pp.483-489, 1992.
[27]. H. Zhong, B. Sun, D. Warkentin, S. Zhang, R. Wu, T. Wu, M.B. Sticklen, “The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes”, Plant Physiology, Vol. 110, pp.1097–1107, 1996.
[28]. H. Zhong, W. Wang, M.B Sticklen, “In vitro morphogenesis of Sorghum bicolor (L.) Moench: efficient plant regeneration from shoot apices”. Journal of Plant Physiology, Vol.153, pp.719–726, 1998.
[29]. P. Devi, H. Zhong, M.B. Sticklen, “In vitro morphogenesis of pearl millet [Pennisetum glaucum. (L.) R.Br.]: efficient production of multiple shoots and inflorescences from shoot apices”, Plant Cell Reports Vol.19, pp. 546–550, 2000.
[30]. S. Zhang, H. Zhang, M.B. Zhang, “Production of multiple shoots from shoot apical meristems of oat (Avena sativa L.)”, Journal of Plant Physiology, Vol. 148, pp. 667–671, 1996.
[31]. S. Zhang, M.J. Cho, T. Koprek, R. Yun, P. Bregitzer, P.G. Lemaux, “Genetic transformation of commercial cultivars of oat (Avena sativa L.) And barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings” Plant Cell Reports, Vol. 18, Issue. 4, pp.959–966, 1999.
[32]. L.M. Wu, Y.M. Wei and Y.L. Zheng, “Effects of silver nitrate on the tissue culture of immature wheat embryos”, Russian Journal of Plant Physiololgy, Vol. 53, Issue.4, pp. 530‐534, 2006
[33]. EH Bouiamrine, M Diouri and R El‐Halimi, “Somatic embryogenesis and plant regeneration capacity from mature and immature durum wheat embryos”, International journal of Biological sciences, Vol.9, Issue.2, pp. 29‐39, 2012
[34]. K. Oldach, A. Morgenstern, S. Rother, M. Girgi, M. O’Kennedy and H. Lörz, “Efficient in vitro plant regeneration from immature zygotic embryos of Pearl millet [Pennisettum glaucum (L) R Br] and Sorgum bicolor (L) Moench”, Plant Cell Reports,Vol 20,Issue.5, pp.416‐421, 2001.
[35]. H.A. El‐Itriby, S.K Assem, E.H.A. Hussein, F.M. Abdel‐Calil and M.A. Madkour, “Regeneration and transformation of egyptian maize inbred lines via immature embryo culture and a biolistic particle delivery syste”, In Vitro Cellular and Develop Biology‐Plant, Vol.39, Issue.5, pp.524‐531, 2003.
[36]. S. Pola, N.S. Mani and T. Ramana, “Long‐term maintenance of callus cultures from immature embryo of Sorghum bicolor”, world journal of agriculture science, Vol. 5, Issue.4, pp. 415‐421, 2009.
[37]. A. Sharma, V. Kumar, P Giridhar and G.A. Ravishankar, “Induction of in vitro flowering in Capsicum frutescens under the influence of silver nitrate and cobalt chloride and pollen transformation”, Electronic Journal of Biotechnology, Vol. 11, Issue.2, pp. 1‐6 2008.
[38]. G. Bora, H.K. Gogoi and P.J. Handique, “Effect of silver nitrate and gibberellic acid on in vitro regeneration, flower induction and fruit development in Naga Chilli”, Asia-Pacific Journal of Molecular Biology and Biotechnology, Vol.22, Issue. 1, pp. 137‐144, 2014.
[39]. P.K. Gupta, J.K. Roy, “Molecular markers in crop improvement: present status and future needs in India”, Plant Cell Tissue and Organ Culture, Vol. 70, pp.229–234, 2002.
[40]. J. G. K. Williams, A. R. Kubelak, K. J. Livak, J. A. Rafalski., S. V. Tingey, “DNA polymorphisms amplified by arbitrary primers are useful as genetic markers”, nucleic acids research, Vol.18, pp. 6531-6535, 1990.
[41]. T. Murashige, F. Skoog, “A revised medium for rapid growth and bioassays with tobacco tissue cultures” Plant Physiology, Vol.15, pp.473–497, 1962.
[42]. J.J. Doyle, J.L. Doyle, “Isolation of plant DNA from fresh tissue”, Focus, Vol.12, pp.13–15, 1990
[43]. L. Satish, P. Rathinapriya, A.S. Rency, A.Ceasar, S. Pandian, R. Rameshkumar, “Somatic embryogenesis and regeneration using Gracilaria edulis and Padina boergesenii seaweed liquid extracts and genetic fidelity in finger millet (Eleusine coracana)”, Journal of Applied Phycology, Vol. 28, Issue. 3, pp. 2083–2098, 2016.
[44]. S. Srivastav, S.L. Kothari, “Embryogenic callus induction and high frequency plant regeneration in pearl millet”, Cereal Research Communications, Vol.30, pp. 69–74, 2002.
[45]. P. Baskaran. And N. Jayabalan. “In vitro plant regeneration and mass propagation system for Sorghum bicolor-a valuable major cereal crop”, Journal of Agricultural Technology, Vol.1, pp. 345-363, 2005.
[46]. M. Ramakrishnan, S.A. Ceasar, V. Duraipandiyan, M.A. Daniel, S. Ignacimuthu, “Efficacious somatic embryogenesis and fertile plant recovery from shoot apex explants of onion (Allium cepa. L.)”, In Vitro Cellular & Developmental Biology – plant, Vol. 49, pp.285–293, 2013.
[47]. K. Ozawa, A. Komamine, “Establishment of a system of highfrequency embryogenesis from long-term cell suspension cultures of rice (Oryza sativa L.). Theoretical and Applied Genetics, Vol.77, pp.205–211, 1989
[48]. V.K. Sharma, R. Hänsch, R.R. Mendel and J. Schulze, “A highly efficient plant regeneration system through multiple shoot differentiation from commercial cultivars of barley (Hordeum vulgare L.) Using meristematic shoot segments excised from germinated mature embryos”, Plant Cell Reports, Vol. 23, pp. 9‐16, 2004.
[49]. M. Cheng, T. Hu, J Layton, C.N .Liu, J.E. Fry, “Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat”, In Vitro Cellular & Developmental Biology – plant, Vol. 39, pp. 595–604, 2003.
[50]. M. Ramesh, V. Murugiah, A.K, “Gupta Efficient in vitro plant regeneration via leaf base segments of indica rice (Oryza sativa L)”, Indian Journal of Experimental Biology, Vol.47, pp.68–74, 2009.
[51]. A. Piqueras, N. Alburquerque, K.M. Folta, “Explants used for the generation of transgenic plants” In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer, Berlin Heidelberg, pp 31–56, 2010
Citation
G. Atul Babu, R. Ravindhran, "Influence of Organic Derivatives on Direct Regeneration of finger millet genotype CO 9," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.33-42, 2019 -
Open Access Article
Enhancing acclimatization of tissue cultured plants of Albizia amara by Biotization
G. Indravathi, P. Suresh Babu
Research Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.43-50, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.4350
Abstract
The anatomical, morphological and physiological characteristics of the in vitro developed micro shoots, for a majority of the woody species, have a great impact on subsequent rooting and survival after transfer to greenhouse conditions. Any effort to improve these characteristics by controlling the stressful culture conditions undoubtedly contributes to better rooting of micro cuttings and/or acclimatization of the microplants. In the present investigation, timber yielding leguminous tree, Albizia amara has been selected for micropropagation owing to their, importance as a plant with potential medicinal value. Micropropagated plantlets usually exhibit high mortality rate upon their transfer from lab to land as a result of transplantation shock caused by abiotic and biotic stresses and weak root system. Biotization is the metabolic response of in vitro grown plant material to a microbial inoculum. It leads to morphological and physiological development of plant material thereby enhancing biotic and abiotic stress resistance. The in vitro grown micro shoots of Albizia amara with root primordia were treated with bio inoculants namely - Pseudomonas fluorescens and Trichoderma viride and transferred to plastic pots containing sterilized potting mixture (soil: peat : vermiculite: perlite in 2:1:1:1). There were four treatments viz. control, treatment with T.viride and P. fluorescens separately and dual inoculation. Percent survival of plantlets was observed maximum (82%) in dual inoculation, this must be due to the positive interaction between T.viride and P. fluorescens and their ability to enhance stress tolerance by protecting them from subsequent ‘transplantation shock’. These plantlets also exhibited an increase in root length, the number of lateral roots, shoot length, leaf number, and plant biomass.Key-Words / Index Term
Biotization,,micropropagation,acclimatization, A.amara, T.viride , P. fluorescensReferences
[1]. U.K.Tomar, S.C. Gupta, “In vitro plant regeneration of leguminous trees (Albizia spp)”. Plant Cell Reports, Vol.7 (1988) 385.
[2]. Ramamurthy N, Savithramma N, Shoot bud regeneration from leaf explants of Albizia amara Boiv. Indian J. Plant Physiol, 8 (2003) 372.
[3]. Indravathi G & Pullaiah T, Invitro propagation studies of Albizia amara. African Journal of Plant Science, 7 (2013) 1.
[4]. Trouvelot A, Kough JL, Gianinazzi-Pearson V, Mesure du taux de ycorrhization VA d`un systeme radiculaire.Recherche de methods d`estimation ayant une signification fonctionnelle. In: Physiological and general aspects of mycorrhizae. Paris: (Ed.Gianinazzi Pearson V, Gianinazzi S, INRA) 1986,217.
[5]. Morandi D, Gianinazzi S & Gianinazzi-Pearson V, Intérêt de l’endo- mycorhization dans la reprise et la croissance du Framboisier issu de multiplication vegetative in vitro. Ann. Amélior. Plantes , 29 (1979) 623.
[6]. Ravolanirina F, Gianinazzi S, Trouvelot A & Carre M, Production of endomycorrhizal explants of micropropagated grapevine rootstocks. Agriculture, Ecosyst. Envir. 29 (1989) 323.
[7]. Guillemin JP, Gianinazzi S & Trouvelot A, Screening of arbuscular mycorrhizal fungi for the establishment of micropropagated pineapple plants. Agronomie, 12 (1992) 831.
[8]. Morte MA, Diaz G & Honrubia M, Effect of arbuscular mycorrhizal inoculation on micropropagated Tetraclinis articulata growth and survival. Agronomie ,16 (1996) 633.
[9]. Vestberg M & Uosukainen M, Effect of AMF inoculation on rooting and subsequent growth of cuttings and micro cuttings of greenhouse rose Mercedes. In: Novel biotechnological approaches to plant production: from sterile root to mycorrhizosphere (Joint COST action 8.21 and 8.22, Pisa, Italy) 1996,46.
[10]. Ravolanirina, F.; Blal, B.; Gianinazzi, S.; Gianinazzi-Pearson, V. Mise au point d`une methode rapide d`endomycorhization de vitro plants.Fruits 44:165±170; 1989b.
[11]. Schubert A, Mazzitelli M, Ariusso O & Eynard I, Effects of vesicular-arbuscular mycorrhizal fungi on micropropagated grapevines: influence of endophyte strain, P fertilization, and growth medium.Vitis 29 (1990) 5.
[12]. Lovato PE, Schuepp H, Trouvelot A & Gianinazzi A, Application of arbuscular mycorrhizal fungi (AMF) in the orchard and ornamental plants, In Mycorrhiza- structures, function, molecular biology, and biotechnology,(2nd Edn, Springer, Berlin) 1999, 443.
[13]. McCown BH, Woody Ornamentals, Shade Trees, and Conifers. In: Tissue culture as a plant production system for horticulture crops (Dordrecht. The Netherlands: Martins Nijhoff) 1986, 333.
[14]. Rohr R, Iliev I, Scaltsoyinnes A & Tsoulpha P, Acclimatization of micropropagated forest trees. ActaHortic , 616 (2003) 59.
[15]. Phillips JM & Hayman DS, Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection, Trans Br Mycol Soc, 55 (1970) 158.
[16]. Johnson LF, Curl EA, Methods for Research on the Ecology of Soil-Borne Plant Pathogens. (Minneapolis: Burgess) 1972.
[17]. Hazarika BN, Acclimatization of tissue-cultured plants.Curr Sci, 85 (2003) 1704.
[18]. Frommel MI, Nowak J & Lazarovits G, Treatment of potato tubers with growth-promoting Pseudomonas spp. Plant growth responses and bacterium distributing in the rhizosphere.Plant Soil, 150 (1993) 51.
[19]. Linderman RG & Paulitz TC, Mycorrhizal-rhizobacterial interactions.In: Biological control of soil-borne plant pathogens, (Ed. Homby D, CAB International, Wallington) 1990, 262.
[20]. Avis TJ, Gravel V, Antoun H & Tweddell RS, Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry, 40 (2008) 1733.
[21]. Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Manoharan PT & Rajendran A, Effect of a single application of Trichoderma viride and Pseudomonasfluorescens on growth promotion in cotton plants. African Journal of Agricultural Research, 4 (2009) 1220.
[22]. Mishra DS, Gupta AK, Prajapati CR, and Singh US, Combination of fungal and bacterial antagonists for management of root and stem rot disease of soybean. Pakistan Journal Botany, 43 (2011) 2569.
[23]. Von A. State of commercial use of AMF-inoculum in Germany. In: Arbuscular mycorrhizas in sustainable soil-plant systems- Report of 1997 activities, Cost Action (Ed. Gianinazzi S, & Schuepp H, 821, Iceland) 1998,153.
[24]. Siddiqui ZA & Mahmood I, Effect of plant growth-promoting bacterium, an AM fungus and soil types on the morphometrics and reproduction of Meloidogyne javanica on tomato. Appl. Soil Ecol, 8 (1998) 77.
[25]. Andrade G, De Leij FAAM, Lynch JM, Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on the pea. Lett. Appl. Microbiol. 26 (1998) 311.
[26]. Kloepper JW, Zablotowick RM, Tipping EM & Lifshitz R, Plant growth promotion mediated by bacterial rhizosphere colonizers. In: The Rhizosphere and Plant Growth,.(Ed. Keister DL & Cregan PD; Kluwer, Dordrecht)1991,315.
[27]. Linderman RG, Role of VAM fungi in biocontrol. In: Mycorrhizae and plant health. (Pfleger FL, Linderman RG; St. Paul, MN: APS Press The American Phytopathological Society) 1994, 344.
[28]. Calvet C, Pera J & Barea JM, Interactions of Trichoderma spp. with Glomus mosseae and two wilt pathogenic fungi. Agri. Ecosystem Environ, 29 (1990) 59.
[29]. Datnoff LE, Nemec S & Pernezny K, Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol. Control , 5 (1995) 427.
[30]. Azcon Aguilar C, Cantos M, Troncoso A & Barea J, Beneficial effect of arbuscular mycorrhizas on acclimatization of micropropagated cassava plantlets. Sci Hortic, 72 (1997) 63.
[31]. Barea JM, Rhizosphere, and mycorrhiza of field crops. (Ed. Balazs, Galante E, Lynch JM, Schepers JS, Toutan JP, Werner D & Werry PA) , 2000,110.
[32]. Lovato PE, Gianinazzi-Pearson V, Trouvelot A, Gianinazzi S, The state of mycorrhizas and micropropagation.Adv. Hort. Sci , 10 (1996) 46.
[33]. Pandey A, Palni LMS, Beg N, Biological hardening of tissue culture raised tea plants through rhizosphere bacteria. Biotechnol.Lett. 22 (2000) 1087.
[34]. Elmeskaoui A, Damont JP, Poulin MJ, Piche Y, Desjardins Y, A tripartite culture system for endomycorrhizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 5 (1995) 313.
[35]. Varma A & Schuepp H, Influence of mycorrhization on the growth of micropropagated plants. In: Mukerji KG (Ed.) Concepts in Mycorrhizal Research (Kluwer Academic Publishers, London), 1996, 13.
[36]. Hernandez CS, Piche Y & Desjardins Y, Water relations of whole strawberry plantlets in vitro inoculated with Glomus intraradices in a tripartite culture system. Plant Sci. 143(1999) 81.
[37]. Sahay NS, Varma A, Piriformospora indica: a new biological hardening tool for micropropagated plants.FEMS Microbiol. Lett, 181 (1999) 297.
[38]. Linderman RG, Effects of mycorrhizas on plant tolerance to diseases. In: Arbuscular Mycorrhizas: Physiology and Function (Ed. Kapulnik Y & Douds DD; Kluwer Academic Publishers, Dordrecht) 2000,345.
[39]. Barea JM, Azcon-Aguilar C & Azcon R. Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Multitrophic Interactions in Terrestrial Systems (Ed. Gange AC & Brown VK; Blackwell, Oxford, UK) 1996,65.
[40]. Rincon A, Diez BR, Fraile GS, Garcia L, Pascual MF, et al, Colonization of Pinus halepensis roots by Pseudomonas fluorescens and interaction with the ectomycorrhizal fungus Suillus granulatus. FEMS Microbiol Ecol, 51 (2005) 303.
[41]. Varma A, Sahay NS, Butehom B & Franken P, Piriformospora indica a cultivable plant-growth-promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol, 65 (1999) 2741.
[42]. Dunbar C, Utilization of seaweed extract and plant growth-promoting rhizobacterium in greenhouse production of potato minitubers, M.Sc thesis, Dalhousie University, Halifax, NS, Canada, 1997.
[43]. Lazarovits G & Nowak J, Rhizobacteria for improvement of plant growth and establishment. Hort Science, 32 (1997) 188.
[44]. Pillay VK & Nowak J, Inoculum density, temperature and genotype effects on epiphytic and endophytic colonization and in-vitro growth promotion of tomato by pseudomonas. Can .J.Microbiol,43 (1997) 354.
[45]. Nowak J, Review benefits of in vitro "biotization" of plant tissue cultures with microbial inoculants. In vitro Cell Dev Biol Plant, 34 (1998) 122.
[46]. Burns AJ & Schwarz OJ, Bacterial stimulation of adventitious rooting on in vitro cultured slash pine seedling explants. Plant Cell Rep, 15 (1996) 405.
[47]. Lifshitz R, Kloepper JW et al., Growth promotion of canola seedlings by a strain of Pseudomonas putida under gnotobiotic conditions.Can .J.Microbiol, 33 (1987) 390.
[48]. Yang YS, Wada K, Goto M, et al., In vitro formation of nodular calli in soya bean induced by co-cultivated Pseudomonas maltophilia.Japan.J.Breed, 41 (1991) 595.
[49]. Shetty K, Curtis OF, Levin RE.; et al. Prevention of vitrification associated with invitro shoot culture of oregano by Pseudomonas species. J.Plant Physiol, 147 (1995) 447.
[50]. Richards J, Induced resistance responses in potato inoculated in vitro with plant growth-promoting pseudomonad bacterium, M.Sc. thesis, Dalhousie University, Halifax, NS, Canada;1997.
[51]. Burr TJ, Schroth MN, Suslow TV, Increased potato yields by treatment of seed pieces scientific strains of Pseudomonas fluorescens and P. putida. Phytopathology, 68 (1978) 1377.
[52]. Lavanya M, Venkateshwarlu B & Devi BP Acclimatization of neem micro shoots adaptable to semi-sterile conditions. Ind J Biotechnol, 8 (2009) 218.
[53]. Harman GE, Trichoderma for biocontrol of plant pathogens. Basic research to commercialized products. Cornell communities, conference on biological control, (1996) 1.
[54]. John RP, Tyagi RD, Prevost D, Brar SK, Pouleur S & Surampalli RY, Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum.sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection, 29 (2010) 1452.
[55]. Hooker JE, Gianinazzi S & Vest Berg M et al ., The application of arbuscular mycorrhizal fungi to micropropagation systems: an opportunity to reduce chemical inputs. Agric.Sci.Finland, 3 (1994) 227.
Citation
G. Indravathi, P. Suresh Babu, "Enhancing acclimatization of tissue cultured plants of Albizia amara by Biotization," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.43-50, 2019 -
Open Access Article
R. T. Pawar, T.S. Pathan, Y.M. Bhosale
Research Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.51-55, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.5155
Abstract
An avifaunal survey was conducted at Majalgaon Reservoir for two years, starting from July 2016 to June 2018. The study reveals a rich avian diversity a total of 84 species of birds belonging to 15 orders and 30 families were identified. As the water of the wetland is clear, rich in dissolved oxygen and supports variety of aquatic weeds and fishes, it has been found to be suitable for birds and attracts many migratory birds like large egert, purple heron, white bellied heron, asian open bill stork, greater flamingo, white naked stork etc. Continuous monitoring on the avifaunal diversity was suggested to evaluate the ecological status of the habitats and birds. It can be considered as an efficient tool to the environmentalists, policy makers in order to conserve such species, because, the role of birds in an ecosystem cannot be ignored.Key-Words / Index Term
Majalgaon Reservoir, Avian diversity, Sindphana river, Migratory Birds etcReferences
[1]. Abdulali H. (1981). Checklist of Birds of Maharashtra, BNHS, Mumbai, PP: 1-35.
[2]. Ali, S. and Ripley, S.D. (1983a). Handbook of the Birds of India and Pakistan (compact edition). Oxford University Press, New Delhi. PP. 737
[3]. Balkhande J. V., Bhowte C. S., Kulkarni AN (2012). Checklist of Birds of River Godavari, Dhangartakli near Purna, Dist. Parbhani, Maharashtra, Bionano Frontier 5(2).
[4]. BirdLife International (2001a). Threatened Birds of Asia: The BirdLife International Red Data Book—Vol. 1. Birdlife International. Cambridge, UK,1516pp.
[5]. Buckland S. T., Anderson D. R., Burnham K. P., Laake J. L. (1993). Distance sampling: Estimating abundance of biological populations, Chapman and Hall, London, P. 446.
[6]. Grimmett R., Inskipp C., Inskipp T. (2011). Birds of the Indian Subcontinent. 2nd ed. New Delhi: Oxford University Press.
[7]. Kazmierczak, K., 2000. A field Guide to the Birds of India, Sri Lanka, Pakistan, Nepal Bhutan, Bangladesh and the Maldives. Om Book Service, New Delhi.
[8]. Kulkarni A. N., Bhowte C. S., Kanwate V. S. (2006 a). Bird census in Nanded region (Maharashtra). Bioinfolet 3 (3), 173-178.
[9]. Kulkarni A. N., Kanwate V. S. (2006 c). Piscivorous birds of Dongarkheda irrigation tank. Dist Hingoli, Maharashtra. Jr. Of Aqua. Biol. 21 (1), 86-87.
[10]. Kulkarni A. N., Kanwate V. S. (2010). Avian fauna of forest Jaldhara, Kinwat Dist. Nanded, Maharashtra. Jr. of Aqua. Biol. 25 (1), 46-51.
[11]. Kulkarni A. N., Kanwate V. S., Deshpande V. D. (2005). Birds in and around Nanded city, Maharashtra. Zoo s Print Journal 20 (11), 2076-2078.
[12]. Kulkarni A. N., Kanwate V. S., Deshpande V. D. (2006 b). Checklist of Birds of Shikhachiwadi Reservoir. District Nanded, Maharashtra. J. Of Aqua. Biol 21(10), 80-85.
[13]. Mahabal, A. (2000). Birds of Talra Wildlife Sanctuary in lower Western Himalaya, Himachal Pradesh, with notes on their status and altitudinal movements. Zoos` Print Journal, 15 (10): 334-338.
[14]. Mahabal,A. and Mukherjee, R. (1991). Birds of Mandi District (Himachal Pradesh). Newsletter for Birdwatchers 31 (1&2): 8-9.
[15]. Manakadan, R. and Pittie, A. (2000). Standardised common and scientific names of the birds of the Indian subcontinent. Buceros 6 (1): 1-37.
[16]. Shivaji P. Chavan, Dilip Dudhmal, Shrikrishna Hambarde and A. N. Kulkarni (2015). Birds from godavari river basin in Nanded district of Maharashtra State, India: Annotated status and new reports, Int. J. Curr. Res. Aca. Rev.: 3 (4), 328-351.
[17]. Thakur, M.L. (2008). Studies on status and diversity of avifauna in Himachal Pradesh. Ph.D. thesis, Himachal Pradesh University, Shimla, India. PP 306.
[18]. Thakur, M.L., Mattu, V.K., Hira Lal, Sharma, V., Hem Raj and Thakur, V. (2010). Avifauna of Arki Hills, Solan (Himachal Pradesh), India. Indian Birds 5 (6): 162-166.
[19]. Thakur, M.L.; Mattu, V.K. and Sharma, R.M. (2006). Bird diversity and status in Tara Devi, Shimla, Himachal Pradesh. In: Biodiversity and Environment (Eds.: Pandey B.N. and Kulkarni G.K.). A.P.H. Pub., New Delhi.
[20]. Thakur, M.L.; Paliwal, R.; Tak, P.C. and Mattu, V.K. 2003. Birds of Balh Valley, District Mandi, Himachal Pradesh, India. Annals of Forestry 11 (1): 113-126.
[21]. Thakur, M.L.; Paliwal, R.; Tak, P.C.; Mehta, H.S. and Mattu, V.K. (2002). Birds of Kalatop- Khajjiar Wildlife Sanctuary, Chamba (H.P.). Cheetal 41 (3 & 4): 29-36.
[22]. Yardi D, Patil SS, Auti RG. 2004. Diversity of Avian Fauna from Salim Ali Lake of Aurangabad. 21st Meet of Birds Lovers of Maharashtra, Nanded, 3-4 April 2004
Citation
R. T. Pawar, T.S. Pathan, Y.M. Bhosale, "Avifaunal study of Majalgaon Reservoir and their tributaries, District Beed, Marathwada region of Maharashtra, India," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.51-55, 2019 -
Open Access Article
Utilization of Low-cost Agricultural Waste for Removal of Toxic Metals from Environment: A Review
Snigdha Singh, Indra Jeet Chaudhary, Pankaj Kumar
Review Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.56-61, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.5661
Abstract
Rapid urbanization and industrialization are the leading causes of environmental pollution nowadays. Heavy metals are serious toxic pollutants in soil, water, and air environments. Anthropogenic activity including industrial waste and dust is a widely known source for metal pollution. Various techniques are being used including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption for the removal of heavy metals from the environment. However, these techniques have high operating cost, sludge generation and selectivity of metals. Among them, heavy metal removal by the plant is an eco-friendly, sustainable, rapid and economic process. The adsorbent capacity of metal ions by plant and its removal varies, depending on the nature of the plants, particle size, and metal concentrations. This review paper focuses on the idea of using various agricultural wastes for the removal of heavy metals and also a way to management of waste generated by agriculture field. In this context, agricultural biomass is the best technique for the removal of heavy metals and need to improve the utilization of agricultural waste as sustainable way.Key-Words / Index Term
Toxic metals, Removal efficiency, Agricultural waste, Adsorbent, Plant tolerance powerReferences
[1] R.K. Gautam, M.C. Chattopadhyaya, S.K. Sharma, “Biosorption of heavy metals: recent trends and challenges". In: S.K. Sharma, R. Sanghi (Ed.s.), Wastewater Reuse and Management, Springer, London, pp.305-322. 2013.
[2] J.C. Lee, Y.O. Son, P. Pratheeskumar, X.L. Shi, “Oxidative stress and metal carcinogenesiss”. Free Radical Biol Med, Vol.53 pp.742–757. 2012.
[3] P.C. Nagjyoti, K.D. Lee, T.V.M. Sreekanth, “Heavy metals, occurrence and toxicity for plants: a review”. Environmental Chemistry Letter, Vol.8, pp.199–216, 2010.
[4] A.S. Stasinakis, N.S. Thomadis, “Fate and biotransformation of metal and metalloid species in biological wastewater treatment processes”. Critical Review of Environmental Science and Technology, Vol.40, pp.307–364, 2010.
[5] Q. Manzoor, R. Nadeem, M. Iqbal, R. Saeed, T.M. Ansari, “Organic acids pre-treatment effect on Rosabourbonia phyto-biomass for removal of Pb (II) and Cu(II) from aqueous media”. Bioresource Technology, Vol. 132 pp.446–452, 2013.
[6] M. Elkady, H. Shokry, H. Hamad, “Effect of superparamagnetic nanoparticles on the physicochemical properties of nano-hydroxyapatite for groundwater treatment: adsorption mechanism of Fe (II) and Mn (II)”. RSC Adv Vol. 6, pp.82244–82259, 2016.
[7] N. Rostamnezhad, D. Kahforoushan, E. Sahraei, S. Ghanbarian, M. Shabani, “A method for the removal of Cu(II) from aqueous solutions by sulfide precipitation employing heavy oil fly ash”. Desalination Water Treat. Vol. 57, issue, 37, pp.1–10, 2015.
[8] A. Nędzarek, A. Drost, F.B. Harasimiuk, A. Tórz, “The influence of pH and BSA on the retention of selected heavy metals in the Nanofiltration process using ceramic membrane”. Desalination Vol.369, pp.62–67, 2015.
[9] E. Bazrafshan, E. Mohammadi, A. Ansari-Moghaddam, A.M. Mahvi, “Heavy metals removal from aqueous environments by electrocoagulation process—a systematic: review”. Journal of Environmental Health Science and Engineering Vol.13, pp.74–89, 2015.
[10] H.A. Hamad, W.A. Sadik, Abd El-latif M.M, A.B. Kashyout, M.Y. Feteha, “Photocatalytic parameters and kinetic study for degradation of dichlorophenol-indophenol (DCPIP) dye using
highly active mesoporous TiO2 nanoparticles”. Journal of Environmental Science, Vol.43, pp.26–39, 2016.
[11] Abu Qdais H, H. Moussa, “Removal of heavy metals from wastewater by membrane processes: a comparative study”. Desalination Vol.164, issue. 2, pp.105–110, 2004.
[12] B. Ebbers, L.M. Ottosen, P.E. Jensen, “Comparison of two different electrodialytic cells for separation of phosphorus and heavy metals from sewage sludge ash”. Chemosphere Vol.125, pp.122–129, 2015.
[13] M. Iqbal, A. Saeed, N. Akhtar, “Petiolar felt sheeth of palm: a new bio sorbent for the removal of heavy metals from contaminated water”. Bioresource Technology Vol.81, pp.151–153.
[14] Al-Ashesh S, F. Banat, Al Omar R, Z. Duvnjak, “Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data”. Chemosphere, Vol.41, issue.5, pp.659–665, 2000.
[15] M. Otero, F. Rozada, L.F. Calvo, A.I. Garcia, A. Moran, “Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges”. Biochemical Engineering J, Vol.15, issue.1, pp.59–68, 2003.
[16] M. Shih, “Kinetics of the batch adsorption of methylene blue from aqueous solutions onto rice husk: effect of acid-modified process and dye concentration”. Desalination Water Treat Vol.37, issue.1–3, pp.200–214, 2012.
[17] R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, “Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis”. Ecological Engineering, Vol. 91, pp.317–332, 2016.
[18] United Nations Environmental Protection/Global Program of Action (UNEP/GPA) Why the marine environment needs protection from heavy Metals, UNEP / GPA Coordination Office. 2004.
[19] H. Ali, E. Khan and M.A. Sajad, “Phytoremediation of heavy metals – concepts and applications”. Chemosphere, Vol. 91, pp. 869-81, 2013.
[20] R. Dixit, D. Wasiulah, Malaviya, K. Pandiyan, U.B. Singh, A. Sahu, R. Shukla, B. P. Singh, J. P. Rai, P. K. Sharma, H. Lade and D. Paul, “Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes”. Sustainability, Vol. 7, pp. 2189-212, 2015.
[21] I. Raskin, R. D. Smith and D. E. Salt, “Phytoremediation of metals: using plants to remove pollutants from the environment”. Current Opinion in Biotechnology, Vol. 8, pp. 221-228, 1997.
[22] M. M. Lasat, “Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues” J. Hazardous Substance Res. Vol.2, pp. 1-25, 2000.
[23] A. Gaur and A. Adholeya, “Prospects of arbusclar mycorrhizal fungi in phytoremediation of heavy metal contaminated soils.” Current Science, Vol. 86, issue.4, pp. 528-34, 2004.
[24] A. Buasri, N. Chaiyut, K. Tapang, S. Jaroensin, S. Panphron, “Equilibrium and kinetic studies of biosorption of Zn(II) ions from wastewater using modified corn cob. APCBEE Procedia Vol.3, pp. 60–64, 2012.
[25] L. Zheng, Z. Dang, X.Yi, H. Zhang, “Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk. Journal of Hazardous Materials, Vol. 176, pp.650–656, 2010a.
[26] L. Zheng, Z. Dang, X. Yi, H. Zhang, “Removal of cadmium (II) from aqueous solution by corn stalk graft copolymers”. Bioresource Technology, Vol. 101, pp. 5820–5826, 2010b.
[27] K.K. Wong, C.K. Lee, K.S. Low, M.J. Haron, “Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions”. Chemosphere, Vol. 50, pp.23–28, 2003.
[28] E. Khoramzadeh, B. Nasernejadb, R. Halladj, “Mercury biosorption from aqueous solutions by Sugarcane Bagasse”. J Taiwan Inst Chem Eng, Vol. 44, pp.266–269, 2013.
[29] B. Pejic, M. Vukcevic, M. Kostic, P. Skundric, “Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition”. Journal of Hazardous Materials, Vol. 164, pp.146–153, 2009.
[30] A. Ismail, D.B. Adie, A. Oke, J.A. Otun, N.O. Olarinoye, S. Luckman, C.A. Okufu, “Adsorption kinetics of cadmium ions onto powdered corn cobs”. Can J Chem Eng Vol. 87, pp.896–909, 2009.
[31] T. Ding, S. Hii, L. Ong, “Comparison of pre-treatment strategies for conversion of coconut husk fiber to fermentable sugars”. Bioresource, Vol. 7, issue.2, pp.1540–1547, 2012.
[32] M. Gorgievski, D. Božić, V. Stanković, N. Štrbac, S. Šerbula, “Kinetics equilibrium and mechanism of Cu2+,Ni2+ and Zn2+ ions biosorption using wheat straw”. Ecological Engineering, Vol. 58, pp.113–121, 2013.
[33] R. Elangovan, L. Philip, K. Chandraraj, “Biosorption of hexavalent chromium by palm flower (Borassusaethiopum)”. Chem Eng J, Vol.141, pp.99–111, 2008.
[34] S. Malathi, N. Krishnaveni, R. Sudha, “Adsorptive removal of lead (II) from an aqueous solution by chemically modified cotton seed cake”. Res Chem Intermediat 1-18, 2015.
[35] F. Bouhamed, Z. Elouear, J. Bouzid, “Adsorption removal of copper (II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics”. Journal of Taiwan Institute of Chemical Engineers, Vol. 43, issue.5, pp.741–749, 2012.
[36] M. Jalali, F. Aboulghazi, “Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions”. Journal of Material Cycles Waste Management, Vol. 15, pp.548–555, 2013.
[37] G. García-Rosales, A. Colín-Cruz, “Biosorption of lead by maize (Zea mays) stalk sponge”. Journal of Environmental Management, Vol. 91, pp.2079–2086, 2010.
[38] N. Ahalya, R.D. Kanamadi, T.V. Ramachandra, “Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum)”. Electron J Biotechn, Vol.8, pp.258–264, 2005.
[39] W.E. Oliveira, A.S. Franca, L.S. Oliveira, S.D. Rocha, “Untreated coffee husks as bio sorbents for the removal of heavy metals from aqueous solutions”. Journal of Hazardous Materials, Vol.152, pp.1073–1081, 2008.
[40] M. Imamoglu, H. Yıldız, H. Altundag, Y. Turhan, “Efficient Removal of Cd (II) from Aqueous Solution by Dehydrated Hazelnut Husk Carbon”. Journal of Dispersion Science and Technology, Vol. 36, issue. 2, pp.284–290, 2014.
[41] S. Sobhanardakani, H. Parvizimosaed, E. Olyaie, “Heavy metals removal from wastewaters using organic solid waste—rice husk”. Environmental Science and Pollution Research, Vol. 20, pp.5265–5271, 2013.
[42] L.H. Velazquez-Jimenez, A. Pavlick, J.R. Rangel-Mendez, “Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water”. Ind Crop Prod, Vol.43, pp.200–206, 2013.
[43] D. Mohan, K.P. Singh, “Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste”. Water Res, Vol.36, pp.2304–2318, 2002.
[44] K.K. Krishnani, X. Meng, L. Dupont, “Metal ions binding onto lignocellulosic bio sorbent. Journal of Environmental Science and Health, Part A:” Toxic/ Hazardous Substances and Environmental Engineering, Vol.44, pp.688–699, 2009.
[45] M.Á. Martín-Lara, I.L.R Rico, I.C.A. Vicente, G.B. García, Hoces de MC, “Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions”. Desalination, Vol. 256, pp.58–63, 2010.
[46] dos Santos W.N.L., D.D. Cavalcante, da Silva E.G.P, CF d V, FS D, “Biosorption of Pb (II) and Cd(II) ions by Agave sisalana (sisal fiber)”. Microchemical Journal, Vol.97, pp.269–273, 2011.
[47] K. Johari, N. Saman, S.T. Song, J.Y.Y. Heng, H. Mat, “Study of Hg(II) Removal From Aqueous Solution Using Lignocellulosic Coconut Fiber Bio sorbents: Equilibrium and Kinetic Evaluation”. Chem Eng Commun, Vol.201, pp.1198–1220, 2014.
[48] H.N. Bhatti, I.I. Bajwa, M.A. Hanif, I.H. Bukhari, “Removal of lead and cobalt using lignocellulosic fiber derived from Citrus reticulata waste biomass”. Korean J Chem Eng, Vol. 27, issue.1, pp.218–227, 2010.
[49] V.K. Gupta, D. Pathania, S. Agarwal, S. Sharma, “Removal of Cr(VI) onto Ficus carica bio sorbent from water. Environ Sci Pollut R Vol.20, pp.2632–2264, 2013.
[50] A.E. Ofomaja, “Equilibrium studies of copper ion adsorption onto palm kernel fibre”. Journal of Environmental Management, Vol. 91, pp.1491–1499, 2010.
[51] C.P.J. Isaac, A. Siva Kumar, “Removal of lead and cadmium ions from water using Annona squamosa shell: kinetic and equilibrium studies”. Desalina Water Treat Vol.51, pp.7700–7709, 2013.
[52] P.S. Kumar, S. Ramalingam, R.V. Abhinaya, K.V. Thiruvengadaravi, P. Baskaralingam, S. Sivanesa, “Lead (II) Adsorption onto Sulphuric Acid Treated Cashew Nut Shell. Sep Sci Technol, Vol.46, pp.2436–2449, 2011.
[53] O.S. Amuda, O.I. Ojo, T.L. Edewor, “Biosorption of Lead from Industrial Wastewater Using Chrysophyllum albidum Seed Shell”. Bioremediation Journal Vol.11, issue.4, pp.183–194, 2007.
[54] J.C.P. Vaghetti, E.C. Lima, B. Royer, N.F. Cardoso, B. Martins, T. Calvete, “Pecan Nutshell as Biosorbent to Remove Toxic Metals from Aqueous Solution”. Sep Sci Technol Vol.44, pp.615–644, 2009.
[55] M. Zabihi, A. Ahmadpour, A. Haghighi Asl A, “Removal of mercury from water by carbonaceous sorbents derived from walnut shell”. J Hazard Mater Vol.167, pp.230–236, 2009.
[56] E. Pehlivan, T. Altun, S. Cetin, M.I. Bhanger, “Lead sorption by waste biomass of hazelnut and almond shell”. Journal of Hazardous Materials, Vol.167, pp.1203–1208, 2009a.
[57] E. Pehlivan, T. Altun, S. Parlayici, “Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions”. Journal of Hazardous Materials, Vol.164, pp.982–986, 2009b.
[58] J. Wang, T. Chen, S. Li, Z. Yue, J. Jin, G. He, H. Zhang, “Biosorption of Copper (II) from Aqueous Solutions with Rape Straw”. Geomicrobiol J, Vol.29, pp.250–254, 2012.
[59] V.B.H. Dang, H.D. Doan, T. Dang-Vu, A. Lohi, “Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw”. Bioresource Technology, Vol. 100, pp.211–219, 2009.
[60] M. Abbas, S. Kaddour, M. Trari, “Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon”. J Ind Eng Chem, Vol.20, pp.745–751, 2014.
[61] J. Anand kumar, B. Mandal, “Removal of Cr (VI) from aqueous solution using bael fruit (Aegle marmeloscorrea) shell as an adsorbent”. Journal of Hazardous Materials, Vol.168, pp.633–640, 2009.
[62] K.A. Krishnan, T.S. Anirudhan, “Kinetic and equilibrium modelling of cobalt (II) adsorption onto bagasse pith based sulphurised activated carbon”. Chem Eng J, Vol. 137, issue.2, pp.257–264, 2008.
[63] H. Parab, S. Joshi, N. Shenoy, A, Lali, U.S. Sarma, M. Sudersanan, “Determination of kinetic and equilibrium of Co (II), C(III), and Ni(II) onto coir pith”. Process Biochem, Vol. 41, pp.609–615, 2006.
[64] P.S. Vankar, R. Sarswat, D.S. Malik, “Biosorption of lead and cadmium ions from aqueous solutions onto natural dye waste of Hibiscus rosa sinensis”. Environ Prog Sustain Energy, Vol. 29, pp. 421–427, 2010.
[65] S. Nigam, K. Gopal, P.S. Vankar, “Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata”. Environmental Science Pollut R, Vol.20, pp. 4000–4008, 2013.
[66] C.T. Kamala, K.H. Chu, N.S. Chary, P.K Pandey, S.L. Ramesh, A.R.K. Sastry, Sekhar, “Removal of arsenic (III)from aqueous solutions using fresh and immobilized plant biomass”. Water Resource, Vol.39, pp.2815–2826, 2005.
[67] V. Venugopal, K. Mohanty, “Bio sorptive uptake of Cr (VI) from aqueous solutions by Parthenium hysterophorus weed: Equilibrium, kinetics and thermodynamic studies. Chem Eng J, Vol.174, pp.151–115, 2011.
[68] H. Lata, V.K Garg, R.K. Gupta, “Sequestration of nickel from aqueous solution onto activated carbon prepared from Parthenium hysterophorus L.” Journal of Hazardous Materials. Vol.157, pp.503–509, 2008.
[69] M. Momčilović, M. Purenović, A. Bojić, A. Zarubica, M. Ranđelović, “Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon”. Desalination, Vol.276, pp.53–59, 2011.
[70] S.S. Baral, S.N. Das, G.R. Chaudhury, Y.V. Swamy, P. Rath, “Adsorption of Cr(VI) using thermally activated weed Salvinia cucullata”. Chem Eng J, Vol.139, pp.245–255, 2008.
[71] B. Shrestha, P.L. Homagai, M.R. Pokhrel, K.N. Ghimire, “Exhausted tea leaves- a low-cost adsorbent for the removal of lead (II) and zinc (II) ions for their aqueous solution”. J Nepal Chem Soc Vol.30, pp.123–129, 2012.
Citation
Snigdha Singh, Indra Jeet Chaudhary, Pankaj Kumar, "Utilization of Low-cost Agricultural Waste for Removal of Toxic Metals from Environment: A Review," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.56-61, 2019 -
Open Access Article
Durgavati Yadav, Shivani Srivastava, Yamini Bhusan Tripathi
Review Paper | Journal-Paper (IJSRBS)
Vol.6 , Issue.4 , pp.62-67, Aug-2019
CrossRef-DOI: https://doi.org/10.26438/ijsrbs/v6i4.6267
Abstract
We found that Ayurveda, can serve as a “goldmine” for novel anti-inflammatory agents to treat chronic diseases. The current review is an attempt to provide description of one of the important ayurvedic plant and its treatment in various types of diseases. It is used in ailments like bronchitis, nervous disorders, colic, chest pain, diarrhoea, flatulence, ingestion, rheumatism, cough, fever, depression, tumors, skin diseases, acts as cryoprotective, inflammation and other nervous disorders. It is anti-microbial, anti-cancerous and also shown anti-diabetic potential. A number of active phytoconstituents have isolated and characterized from leaves and rhizomes, containing important essential oils. Its important therapeutic potentials are present in the rhizome part of the plant. Constituents, α-asarone and β-asarone are the predominant bioactive compounds found in this plant. At higher doses, genotoxicity and mutagenicity of α- and β-asarone have been reported in various studies, this limits its use. Ayurvedic plant with their active chemical components and the inflammatory pathways that they inhibit are yet clearly to understand.Key-Words / Index Term
Acorus, Diseases, ProtectionReferences
Bains, J. S., Dhuna, V., Singh, J., Kamboj, S. S., Nijjar, K. K., & Agrewala, J. N. (2005). Novel lectins from rhizomes of two Acorus species with mitogenic activity and inhibitory potential towards murine cancer cell lines. International Immunopharmacology, 5(9), 1470–1478. https://doi.org/10.1016/J.INTIMP.2005.04.004
[2]. Chellian, R., Pandy, V., & Mohamed, Z. (2018). Alpha-asarone attenuates depression-like behavior in nicotine-withdrawn mice: Evidence for the modulation of hippocampal pCREB levels during nicotine-withdrawal. European Journal of Pharmacology, 818, 10–16. https://doi.org/10.1016/j.ejphar.2017.10.025
[3]. Das, B. K., Swamy, A. V., Koti, B. C., & Gadad, P. C. (2019a). Experimental evidence for use of Acorus calamus (asarone) for cancer chemoprevention. Heliyon, 5(5), e01585. https://doi.org/10.1016/j.heliyon.2019.e01585
[4]. Das, B. K., Swamy, A. V., Koti, B. C., & Gadad, P. C. (2019b). Experimental evidence for use of Acorus calamus (asarone) for cancer chemoprevention. Heliyon, 5(5), e01585. https://doi.org/10.1016/J.HELIYON.2019.E01585
[5]. Feng, X.-L., Yu, Y., Qin, D.-P., Gao, H., & Yao, X.-S. (2015). Acorus Linnaeus: a review of traditional uses, phytochemistry and neuropharmacology. RSC Advances, 5(7), 5173–5182. https://doi.org/10.1039/C4RA12049C
[6]. Forouzanfar, F., & Hosseinzadeh, H. (2018). Medicinal herbs in the treatment of neuropathic pain: a review. Iranian Journal of Basic Medical Sciences, 21(4), 347–358. https://doi.org/10.22038/IJBMS.2018.24026.6021
[7]. full-text. (n.d.).
[8]. Gacche, R. N., & Dhole, N. A. (2006). Antioxidant and Possible Anti-Inflammatory Potential of Selected Medicinal Plants Prescribed in the Indian Traditional System of Medicine. Pharmaceutical Biology, 44(5), 389–395. https://doi.org/10.1080/13880200600751691
[9]. Ganjewala, D., & Srivastava, A. K. (2011). An Update on Chemical Composition and Bioactivities of Acorus Species. Asian Journal of Plant Sciences, 10(3), 182–189. https://doi.org/10.3923/ajps.2011.182.189
[10]. Geng, Y., Li, C., Liu, J., Xing, G., Zhou, L., Dong, M., … Niu, Y. (2010). Beta-Asarone Improves Cognitive Function by Suppressing Neuronal Apoptosis in the Beta-Amyloid Hippocampus Injection Rats. Biological & Pharmaceutical Bulletin, 33(5), 836–843. https://doi.org/10.1248/bpb.33.836
[11]. Ghosh, M. (2006). Antifungal properties of haem peroxidase from Acorus calamus. Annals of Botany, 98(6), 1145–1153. https://doi.org/10.1093/aob/mcl205
[12]. Gilani, A. ul H., Shah, A. J., Ahmad, M., & Shaheen, F. (2006). Antispasmodic effect ofAcorus calamus Linn. is mediated through calcium channel blockade. Phytotherapy Research, 20(12), 1080–1084. https://doi.org/10.1002/ptr.2000
[13]. Imam, H., Riaz, Z., Azhar, M., Sofi, G., & Hussain, A. (2013). Sweet flag (Acorus calamus Linn.): An incredible medicinal herb. International Journal of Green Pharmacy, 7(4), 288. https://doi.org/10.4103/0973-8258.122053
[14]. Khan, M. A., & Islam, M. (2012). Analgesic and cytotoxic activity of Acorus calamus L., Kigelia pinnata L., Mangifera indica L. and Tabernaemontana divaricata L. Journal of Pharmacy and Bioallied Sciences, 4(2), 149. https://doi.org/10.4103/0975-7406.94820
[15]. Khwairakpam, A. D., Damayenti, Y. D., Deka, A., Monisha, J., Roy, N. K., Padmavathi, G., & Kunnumakkara, A. B. (2018). Acorus calamus: a bio-reserve of medicinal values. Journal of Basic and Clinical Physiology and Pharmacology, 29(2), 107–122. https://doi.org/10.1515/jbcpp-2016-0132
[16]. Lee, J. Y., Lee, J. Y., Yun, B.-S., & Hwang, B. K. (2004). Antifungal Activity of β-Asarone from Rhizomes of Acorus gramineus. Journal of Agricultural and Food Chemistry, 52(4), 776–780. https://doi.org/10.1021/jf035204o
[17]. Mathew, M., & Subramanian, S. (2014). In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PloS One, 9(1), e86804. https://doi.org/10.1371/journal.pone.0086804
[18]. MD Kapadia, A. K. (2012). ANTIDIARRHOEAL ACTIVITY OF LEAVES OF ACORUS CALAMUS | INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH. https://doi.org/http://dx.doi.org/10.13040/IJPSR.0975-8232.3(10).3847-50
[19]. Meenakshisundaram, A., Harikrishnan, T. J., Rani, N., & Anna, T. (2014). Evaluation of Extract from Sweet Flag Rhizome for Biological Activity against House Fly. Cloud Publications International Journal of Advanced Veterinary Science and Technology, 3(1), 140–144. Retrieved from http://scientific.cloud-journals.com/index.php/IJAVST/article/view/Sci-201
[20]. Motley, T. J. (n.d.). The Ethnobotany of Sweet Flag, Acorus calamus (Araceae). Economic Botany. SpringerNew York Botanical Garden Press. https://doi.org/10.2307/4255666
[21]. Muthuraman, A., & Singh, N. (2012). Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. Journal of Ethnopharmacology, 142(3), 723–731. https://doi.org/10.1016/J.JEP.2012.05.049
[22]. Patel, P., Vaghasiya, J., Thakor, A., & Jariwala, J. (2012). Antihypertensive effect of rhizome part of Acorus calamus on renal artery occlusion induced hypertension in rats. Asian Pacific Journal of Tropical Disease, 2, S6–S10. https://doi.org/10.1016/S2222-1808(12)60114-5
[23]. Pawar, V. S., Anup, A., Shrikrishna, B., & Shivakumar, H. (2011). Antidepressant–like effects of Acorus calamus in forced swimming and tail suspension test in mice. Asian Pacific Journal of Tropical Biomedicine, 1(1), S17–S19. https://doi.org/10.1016/S2221-1691(11)60114-7
[24]. Rau, O., Wurglics, M., Dingermann, T., Abdel-Tawab, M., & Schubert-Zsilavecz, M. (2006). Screening of herbal extracts for activation of the human peroxisome proliferator-activated receptor. Die Pharmazie, 61(11), 952–956. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17152989
[25]. Ravichandiran, V., & Vishal, P. (n.d.). IN VITRO EVALUATION FOR IMMUNOMODULATORY ACTIVITY OF ACORUS CALAMUS ON HUMAN NEUTROPHILS. Int. Res. J. Pharm, 2015(7). https://doi.org/10.7897/2230-8407.06792
[26]. Rawat, S., Jugran, A. K., Bahukhandi, A., Bahuguna, A., Bhatt, I. D., Rawal, R. S., & Dhar, U. (2016). Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan Region. 3 Biotech, 6(2), 154. https://doi.org/10.1007/s13205-016-0470-2
[27]. Research journal of pharmaceutical, biological and chemical sciences RJPBCS. (n.d.). Retrieved from https://www.researchgate.net/publication/280009991_The_Sweetness_and_Bitterness_of_Sweet_Flag_Acorus_calamus_L_-_A_Review
[28]. RS Parab, S. M. (2003). Evaluation of hypolipidemic activity of Acorus calamus Linn. in rats | R.S. Parab. Indian Drugs, 40(1), 25–29. Retrieved from https://www.researchgate.net/publication/289140064_Evaluation_of_hypolipidemic_activity_of_Acorus_calamus_Linn_in_rats
[29]. Sabitha Rani, A., Satyakala, M., Sandya Devi, V., & Suryanarayana Murty, U. (2003). Evaluation of Antibacterial Activity from Rhizome Extract of Acorus calamus Linn. Journal of Scientiti c & Industri al Research (Vol. 62). Retrieved from http://nopr.niscair.res.in/bitstream/123456789/26317/1/JSIR 62%286%29 623-625.pdf
[30]. Saroya, A. S., & Singh, J. (2018). Neuropharmacology of Acorus calamus L. In Pharmacotherapeutic Potential of Natural Products in Neurological Disorders (pp. 129–134). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-0289-3_11
[31]. Shah, A. J., & Gilani, A. H. (2012). Aqueous-methanolic extract of sweet flag (Acorus calamus) possesses cardiac depressant and endothelial-derived hyperpolarizing factor-mediated coronary vasodilator effects. Journal of Natural Medicines, 66(1), 119–126. https://doi.org/10.1007/s11418-011-0561-7
[32]. Shah, P. D., Ghag, M., Deshmukh, P. B., Kulkarni, Y., Joshi, S. V., Vyas, B. A., & Shah, D. R. (2012). Toxicity study of ethanolic extract of Acorus calamus rhizome. International Journal of Green Pharmacy (IJGP), 6(1). https://doi.org/10.22377/IJGP.V6I1.234
[33]. Shukla, P. K., Khanna, V. K., Ali, M. M., Maurya, R. R., Handa, S. S., & Srimal, R. C. (2002). Protective effect of Acorus calamus against acrylamide induced neurotoxicity. Phytotherapy Research, 16(3), 256–260. https://doi.org/10.1002/ptr.854
[34]. Singh, B. K., Pillai, K. K., Kohli, K., & Haque, S. E. (2011). Isoproterenol-Induced Cardiomyopathy in Rats: Influence of Acorus calamus Linn. Cardiovascular Toxicology, 11(3), 263–271. https://doi.org/10.1007/s12012-011-9121-3
[35]. Singh, R., Pharm, M., Sharma, K., & Malviya, R. (2011). Pharmacological Properties and Ayurvedic Value of Indian Buch Plant (Acorus calamus): A Short Review. Advances in Biological Research, 5(3), 145–154. Retrieved from https://pdfs.semanticscholar.org/1083/b32c25ce2afdd8ffbca3d72137b93eb23a89.pdf
[36]. Zaugg, J., Eickmeier, E., Ebrahimi, S. N., Baburin, I., Hering, S., & Hamburger, M. (2011). Positive GABA(A) receptor modulators from Acorus calamus and structural analysis of (+)-dioxosarcoguaiacol by 1D and 2D NMR and molecular modeling. Journal of Natural Products, 74(6), 1437–1443. https://doi.org/10.1021/np200181d
[37]. ZHANG, G., KIMURA, S., NISHIYAMA, A., SHOKOJI, T., RAHMAN, M., YAO, L., … ABE, Y. (2005). Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovascular Research, 65(1), 230–238. https://doi.org/10.1016/j.cardiores.2004.08.013
[38]. Zhou, Q., Nie, S., & Liu, Z. (2016). Effect of Donepezil Hydrochloride on Cognitive Function Med One Effect of Donepezil Hydrochloride on Cognitive Function Recovery of Rats With Alzheimer’s Disease Effect of Donepezil Hydrochloride on Cognitive Function. https://doi.org/10.20900/mo.20160023
Citation
Durgavati Yadav, Shivani Srivastava, Yamini Bhusan Tripathi, "Acorus Calamus: A Review," International Journal of Scientific Research in Biological Sciences, Vol.6, Issue.4, pp.62-67, 2019
Next Last |
You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at support@isroset.org or view contact page for more details.