References
[1] Y. S. Lee, C. C. Su, “Experimental Studies of Isobutane (R600a) as the Refrigerant in Domestic Refrigeration System,” Applied Thermal Engineering, Vol.22, No.5, pp.507-519, 2002.
[2] C. C. Yu, T. P. Teng, “Retrofit Assessment of Refrigerator Using Hydrocarbon Refrigerants,” Applied Thermal Engineering, Vol.66, No.1-2, pp.507-518, 2014.
[3] M. M. Ahmadpour, M. A. Akhavan-Behabadi, B. Sajadi, A. Salehi-Kohestan, “Effect of Lubricating Oil on Condensation Characteristics of R600a inside a Horizontal U-shaped Tube: Experimental Study,” International Journal of Thermal Sciences, Vol.145, No.106007, 2019.
[4] M. M. Ahmadpour, M. A. Akhavan-Behabadi, “Experimental Investigation of Heat Transfer During Flow Condensation of HC-R600a based Nano-Refrigerant Inside a Horizontal U-shaped Tube,” International Journal of Thermal Sciences, Vol.146, No.106110, 2019.
[5] M. Mozafari, M. A. Akhavan-Behabadi, H. Qobadi-Ar, M. Fakoor-Pakdaman, “Condensation and Pressure Drop Characteristics of R600a in a Helical Tube-in-Tube Heat Exchanger at Different Inclination Angles,” Applied Thermal Engineering, Vol.90, pp.571-578, 2015.
[6] X. Jia, H. Wang, X. Wang, “Solubility Measurement, Modeling and Mixing Thermodynamic Properties of R1243zf and R600a in [BMIM][Ac],” The Journal of Chemical Thermdynamics, Vol.164, No.106637, 2022.
[7] B. A. Younglove, J. F. Ely, “Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane,” J. Phys. Chem. Ref. Data, Vol.16, pp.577-798, 1978.
[8] H. Miyamoto, K. Watanabe, “A Thermodynamic Property Model for Fluid-Phase Isobutane,” International Journal of Thermophysics, Vol.23, No.2, pp.459-475, 2002.
[9] S. Chan, I. M. Astina, P. S. Darmanto, H. Sato, “Helmholtz Equation of State for Wide-Fluid Phase Isobutane,” in Proceedings of the International Conference on Fluid and Thermal Energy Conversion 2006, Jakarta, 2006.
[10] D. Bücker, W. Wagner, “Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane,” J. Phys. Chem. Ref. Data, Vol.35, pp.929-1019, 2006.
[11] R. A. Perkins, J. W. Magee, “Molar Heat Capacity at Constant Volume for Isobutane at Temperatures from (114 to 345) K and at Pressures to 35 MPa,” J. Chem. Eng. Data, Vol.54, pp.2646-2655, 2009.
[12] Q. Liu, X. Feng, K. Zhang, B. An., Y. Duan, “Vapor Pressure and Gaseous Speed of Sound Measurements for Isobutane (R600a),” Fluid phase Equilibria, Vol.382, pp.260-269, 2014.
[13] Y. Liu, X. Zhao, S. Lv, “Heat Capacity of Isobutane in Liquid Phase at Temperatures from 303 K to 413 K and Pressures up to 12 MPa,” J. Chem. Thermodynamics, Vol.111, pp.265-270, 2017.
[14] A. E. Hawary, K. Meier, “Speed-of-Sound Measurements and Derived Thermodynamic Properties of Liquid Isobutane,” J. Chem. Eng. Data, Vol.63, pp.3684-3703, 2018.
[15] P. J. Mohr, D. B. Newell, B. Taylor, “CODATA recommended values of the fundamental physical constants,” Review of Modern Physics, Vol.88, pp.1-73, 2016.
[16] I. M. Astina, H. I. Alfisahri, “New Thermodynamic Equation of State for Refrigerant HFO-1243zf,” International Journal of Thermodynamics, Vol.26, No. 4, pp.19-30, 2023.
[17] I. M. Astina, H. Sato, “A Rapid Genetic Optimization Technique for Rational Thermodynamic Modeling Having Reliable Third Virial Coefficients,” In Proceeding of International Conference of Thermophysics, Boulder, 2002.
[18] G. Budiarso, I. M. Astina, “Development of Helmholtz Equation of State for Thermodynamic Properties of R-1233zd(E),” International Journal of Scientific Research in Science and Technology, Vol.9, No.3, pp.765-776, 2022.
[19] Wikipedia, “Genetic algorithm,” Wikipedia, 20243. [Online]. Available: https://en.wikipedia.org/wiki/Genetic_algorithm. [Accessed 1 4 2024].
[20] S. Dubey, R. Jhaggar, R. Verma and D. Gaur, “Encryption and Decryption of Data by Genetic Algorithm,” International Journal of Scientific Research in Computer Science and Engineering, Vol.5, No.3, pp.42-46, 2017.
[21] A. Yadav, “An Improved Location-Based Genetic Algorithm for Routing in FANETs,” International Journal of Scientific Research in Computer Science and Engineering, Vol. 11, No. 2, pp. 23-30, 2023.
[22] K. Kan, I. M. Astina, P. S. Darmanto, “Simultaneous optimization of saturation equations for two hydrocarbons and four hydrofluoroolefins refrigerants,” In Proceeding of IOP Conference Series: Materials Science and Engineering, Vol. 715, No. 1, p. 012069, 2020.
[23] K. Kan, I. M. Astina, “Development of Thermodynamic Equation of State for Normal Butane with Comprehensive Assessment,” International Journal of Engineering Inventions, Vol. 12, No. 7, pp. 110-122, 2023.
[24] K. Kan, I. M. Astina, “Effective Strategy of Modeling Helmholtz Equation of state,” In Proceeding of the 10th AUN/SEED-Net Regional Conference on Mechanical Engineering and Manufacture Engineering, Phnom Penh, 2019.
[25] T. Ito, Y. Nagata, H. Miyamoto, “Measurement of the (p, ?, T) Properties for Pure Hydrocarbons at Temperatures up to 600 K and Pressures up to 200 MPa,” Int J. Thermophys, Vol. 35, pp. 1636-1646, 2013.
[26] H. Miyamoto, M. Uematsu, “Measurements of (p,v,T) properties for isobutane in the temperature range from 280 K to 440 K at pressures up to 200 MPa,” J. Chem. Thermodynamics, Vol. 36, pp. 360-366, 2006.
[27] Y. Kayukawa, M. Hasumoto, Y. Kano, K. Watanabe, “Liquid-Phase Thermodynamic Properties for Propane (1), n-Butane (2), and Isobutane (3),” J. Chem. Eng. Data, Vol. 50, pp. 556-564, 2005.
[28] S. Glos, R. Kleinrahm, W. Wagner, “Measurement of the (p, ?, T) Relation of Propane, Propylene, n-Butane, and Isobutane in the Temperature Range from (95 to 340) K at Pressure up to 12 MPa Using an Accurate Two-sinker Densimeter,” J. Chem. Thermodynnamics, Vol. 36, pp. 1037-1059, 2004.
[29] W. M. Haynes, “Measurements of Densities and Dielectric Constants of liquid Isobutane from 130 K to 300 K at Pressures to 35 MPa,” J. Chem. Thermodynamics, Vol. 28, No. 4, pp. 367-369, 1983.
[30] W. M. Morris, B. H. Sage, W. N. Lacey, “Tech. Publ. No. 1128,” Na. Bur. Stand., Boulder, 1939.
[31] B. H. Sage, W. N. Lacey, “Phase Equilibrium in Hydrocarbon Systems, Thermodynamic Properties of Isobutane,” Ind. Eng. Chem., Vol. 30, pp. 673-681, 1938.
[32] T. Hondo, Y. Kayukawa, K. Watanabe, “P?Tx Measurements for Gas-Phase Propane + Isobutane System by the Burnett Method,” In Proceeding of Asian Conf. Refrig. and Air Conditioning, Kobe, 2002.
[33] M. Waxman, J. S. Gallagher, “Thermodynamic Properties of Isobutane for Temperatures from 250 to 600 K and Pressures from 0.1 to 40 MPa,” J. Chem. Eng. Data, Vol. 28, No. 2, pp. 224-241, 1983.
[34] B. H. Sage, D. C. Webster, W. N. Lacey, “Phase Equilibrium in Hydrocarbon Systems. XX. Isobaric Heat Capacity of Gaseous Propane, n-Butane, Isobutane, and n-Butane,” Ind. Eng. Chem., Vol. 29, pp. 1309-1314, 1937.
[35] M. Waxman, H. A. Davis, J. M. H. Levelt Sengers and M. Klein, “Interagency Report NBSIR,” Natl. Bur. Stand., Boulder, 1978.
[36] J. E. Orrit, J. M. Lauprete, “Density of Liquefied Natural Gas Components,” Adv. Cryog. Engineering, Vol. 23, pp. 573-579, 1978.
[37] J. A. Beattie, J. S. Marple, D. G. Edwards, “The Vapor Pressure, Orthobaric Liquid Density, and Critical Constants of Isobutane,” J. Chem. Phys., Vol. 17, No. 6, pp. 576-577, 1949.
[38] W. M. Haynes, M. J. Hiza, “Measurements of the Orthobaric Liquid Densities of Methane, Ethane, Propane, Isobutane, and Butane,” J. Chem. Thermodyn., Vol. 9, pp. 179-187, 1977.
[39] C. R. McClune, “Measurement of the Densities of Liquefied Hydrocarbons from 93 to 173 K,” Cryogenics, Vol. 16, No. 5, pp. 289-295, 1976.
[40] L. C. Kahre, “Liquid Density of Light Hydrocarbon Mixtures,” J. Chem. Eng. Data, Vol. 18, No. 3, pp. 267-270, 1973.
[41] P. Sliwinski, “Die Lorentz-Lorenz-Funktion von Dampfförmigem und Flüssigem Äthan, Propan und Butan,” Z. Phys. Chem. Neue. Folge., Vol. 68, pp. 263-279, 1969.
[42] R. C. Wackher, C. B. Linn, A. V. Grosse, “Physical Properties of Butanes and Butenes,” Ind. Eng. Chem., Vol. 37, No. 5, pp. 464-468, 1945.
[43] R. W. Benoliel, “Some Physical Constants of Seven Four-Carbon-Atom Hydrocarbons and Neopentane,” M. S. Thesis, Penn. State Univ., Univ. Park, PA, 1941.
[44] Y. Higashi, “Critical Parameters for 2- Methylpropane (R600a),” J. Chem. Eng. Data, Vol. 51, No. 2, pp. 406-408, 2006.
[45] H. Miyamoto, J. Takemura, M. Uematsu, “Vapour Pressures of Isobutane at T= (310 to 407) K,” J. Chem. Thermodyn., Vol. 36, pp. 919-923, 2004.
[46] B. Y. Lee, J. Y. Park, J. S. Lim, Y. W. Lee, “Vapor-LiquidEquilibria for Isobutane Plus Pentafluoroethane (HFC-125) at 293.15 to 313.15 K and + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) at 303.15 to 323.15 K,” J. Chem. Eng. Data, Vol. 45, No. 5, pp. 760-763, 2000.
[47] J. S. Lim, J. Y. Park, B. G. Lee, J. D. Kim, “Phase Equilibria of Chlorofluorocarbon Alternative Refrigerant Mixtures. Binary Systems of Trifluoromethane Plus Isobutane at 283.15 and 293.15 K and and 293.15 K and 1,1,1Trifluoroethane Plus Isobutane at 323.15 and 333.15 K,” J. Chem. Eng. Data, Vol. 45, No. 5, pp. 734-737, 2000.
[48] J. S. Lim, J. Y. Park, B. G. Lee, Y. W. Lee, J. D. Kim, “Phase Equilibria of CFC Alternative Refrigerant mixtures: Binary Systems of Isobutane + 1,1,1,2-Tetrafluoroethane + 1,1-Difluorethane, and Plus Difluoromethane,” J. Chem. Eng. Data, Vol. 44, No. 6, pp. 1226-1230, 1999.
[49] L. A. Weber, “Simple Apparatus for Vapor-Lipuid Equilibrium Measurements with Data for the Binary systems of Carbon Dioxide with n-Butane and Isobutane,” J. Chem. Eng. data, Vol.34, pp.171-175, 1989.
[50] L. A. Weber, “Vapour-Liquid Equilibria Measurements for Carbon Dioxide with Normal and Isobutane from 250 to 280 K,” Cryogenics, Vol.25, pp.338-342, 1985.
[51] J. A. Martinez-Ortiz and D. B. Manley, “Vapor Pressures for the System Isobutane-Isobutylene-n-Butane,” J. Chem. Eng. Data, Vol.23, No.2, pp.165-167, 1978.
[52] M. Hirata, S. Suda, “Light Hydrocarbon Vapor-Liquid Equilibria”. Mem. Fac.Technol. Tokyo Metrop. Univ., Vol.19, pp.103-122, 1969.
[53] H. Hipkin, “Experimental Vapor-Liquid Equilibrium Data for Propane-Isobutane,” AIChE J., Vol.12, no.3, pp.484-487, 1966.
[54] G. Ernst, J. Büsser, “Ideal and Real Gas State Heat Capacities CP of C3H8, i-C4H10, C2F5Cl, CH2ClCF3, CF2ClCFCl2, and CHF2Cl,” J. Chem. Thermodyn., Vol.2, pp.787-791, 1970.
[55] J. G. Aston, R. M. Kennedy, S. C. Schumann, “The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Isobutane,” J. Am.Chem. Soc., Vol.62, pp.2059-2063, 1940.
[56] G. S. Parks, C. H. Shomate, W. D. Kennedy, B. L. J. Crawford, “The Entropies of n-Butane and Isobutane with Some Heat Capacity Data for Isobutane,” J. Chem. Phys., Vol.5, pp.359-363, 1937.
[57] G. S. Parks, C. H. Shomate, W. D. Kennedy, B. L. J. Crawford, “The Entropies of n-Butane and Isobutane with Some Heat Capacity Data for Isobutane,” J. Chem. Phys., Vol.5, pp.359-363, 1937.
[58] J. G. Aston, R. M. Kennedy, S. C. Schumann, “The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Isobutane,” J. Am.Chem. Soc., Vol.62, pp.2059-2063, 1940.
[59] S. S. Chen, R. C. Wilhoit, B. J. Zwolinski, “Ideal Gas Thermodynamic Properties and Isomerization of n-Butane and Isobutane,” J. Phys. Chem. Ref. Data, Vol. 4, pp. 859-869, 1975.
[60] M. Jaeschke, P. Schley, “Ideal-Gas Thermodynamic Properties for Natural-Gas Applications,” Int. J. Thermophys., Vol.16, pp.1381-1392, 1995.
[61] M. B. Ewing, A. R. H. Goodwin, “Thermophysical Properties of Alkanes from Speeds of Sound Determined Using a Spherical Responator, 4, 2- Methylpropane at Temperatures in the Range 251K to 320K and Pressures in the Range 5 kPa to114 kPa,” J. Chem. Thermodyn., Vol.23, pp.1107-1120, 1991.