References
[1] R. Korpelainen, J. Lams, K.M. Kaikkonen, J. Korpelainen, J. Laukkanen, I. Palatsi, T.E. Takala, T.M. Ikaheimo, A.J. Hautala, “Exercise capacity and mortality - a follow-up study of 3033 subjects referred to clinical exercise testing,” Ann. Med., Vol.48, pp. 1–8, 2016.
[2] B.K. Pedersen, M.A. Febbraio, “Muscles, exercise and obesity: skeletal muscle as a secretory organ,” Nat. Rev. Endocrinol. Vol.8, pp. 457–465, 2012.
[3] C. Fruhbeis, D. Frohlich, W.P. Kuo, J. Amphornrat, S. Thilemann, A.S. Saab, et al., “Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte-Neuron Communication,” Plos Biology, Vol.11, Issue.7B, 2013.
[4] Y. Takahashi, M. Nishikawa, H. Shinotsuka, Y. Matsui, S. Ohara, T. et al., “Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection,” Journal of Biotechnology, Vol.165, Issue.2, pp.77-84B, 2013.
[5] I. Parolini, C. Federici, C. Raggi, L. Lugini, S. Palleschi, A. De Milito, et al., “Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells,” Journal of Biological Chemistry, Vol.284, Issue.49, pp. 34211-34222, 2009.
[6] C. Fruhbeis, S. Helmig, S. Tug, P. Simon, E.M. Kramer-Albers, “Physical exercise induces rapid release of small extracellular vesicles into the circulation,” Journal of Extracellular Vesicles, Vol.4. 2015. doi: 10.3402/jev.v4.28239.
[7] J.M. Spinazzola, E. Gussoni, “Exosomal Small Talk Carries Strong Messages from Muscle Stem Cells,” Cell Stem Cell, Vol.20, Issue.1, pp. 1-3, 2017.
[8] A. Savina, M. Furlan, M. Vidal, M. I. Colombo, “Exosome release is regulated by a calcium-dependent mechanism in K562 cells,” Journal of Biological Chemistry, Vol.278, Issue.22, pp. 20083-20090, 2003.
[9] B.H. Sung, T. Ketova, D. Hoshino, A. Zijlstra, A.M. Weaver, “Directional cell movement through tissues is controlled by exosome secretion,” Nature Communications, Vol.6, 2015. doi: 10.1038/ncomms8164.
[10] A. Zomer, J. Van Rheenen, “Implications of Extracellular Vesicle Transfer on Cellular Heterogeneity in Cancer: What Are the Potential Clinical Ramifications,” Cancer Research, Vol.76, Issue.8, pp. 2071-2075, 2016.
[11] S.E. Headland, H.R. Jones, A.S.V. D’Sa, M. Perretti, L.V. Norling, “Cutting-Edge Analysis of Extracellular Microparticles using ImageStreamX Imaging Flow Cytometry,” Sci. Rep., Vol.4, p.5237, 2015
[12] N.Z.M. Eichner, U. Erdbrügger, S.K. Malin, “Extracellular Vesicles: A Novel Target for Exercise-Mediated Reductions in Type 2 Diabetes and Cardiovascular Disease Risk,” J. Diabetes Res., 7807245, 2018.
[13] E.N. Wilhelm, L. Mourot, M. Rakobowchuk, “Exercise-Derived Microvesicles: A Review of the Literature,” Sport Med., Vol.48, pp.2025–2039, 2018.
[14] V. Chaar, M. Romana, J. Tripette, C. Broquere, M.-G. Huisse, O. Hue, et al. “Effect of strenuous physical exercise on circulating cell-derived microparticles,” Clin. Hemorheol. Microcirc., Vol.47, pp.15–25, 2011.
[15] D.A. Keir, F.Y. Fontana, T.C. Robertson, J.M. Murias, D.H. Paterson, J.M. Kowalchuk, et al. “Exercise Intensity Thresholds,” Med. Sci. Sport Exerc., Vol.47, pp.1932–1940, 2015.
[16] K. Maruyama, T. Kadono, E. Morishita, “Plasma Levels of PlateletDerived Microparticles are Increased After Anaerobic Exercise in Healthy Subjects,” J. Atheroscler Thromb., Vol.19, pp.585–587, 2012.
[17] M. Sossdorf, G.P. Otto, R.A. Claus, H.H. Gabriel, W. Lösche, “Release of pro-coagulant microparticles after moderate endurance exercise,” Platelet s, Vol.21, pp.389–391, 2010.
[18] K.A. Lansford, D.D. Shill, A.B. Dicks, M.P. Marshburn, W.M. Southern, N.T. Jenkins, “Effect of acute exercise on circulating angiogenic cell and microparticle populations,” Exp. Physiol., Vol.101, pp.155–167, 2016.
[19] T. Guiraud, M. Gayda, M. Juneau, L. Bosquet, P. Meyer, G. Théberge-Julien, et al. (2013). “A Single Bout of High-Intensity Interval Exercise Does Not Increase Endothelial or Platelet Microparticles in Stable, Physically Fit Men With Coronary Heart Disease,” Can. J. Cardiol., Vol.29, pp.1285–1291.
[20] E.N. Wilhelm, J. González-Alonso, C. Parris, M. Rakobowchuk, “Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells,” Am. J. Physiol. Hear Circ. Physiol., Vol.311, pp.H1297–H1310, 2016. doi: 10.1152/ajpheart.00516.2016
[21] J. Denham, S.J. Spencer, “Emerging roles of extracellular vesicles in the intercellular communication for exercise-induced adaptations,” Am J Physiol Endocrinol Metab., Vol.319, E320 –E329, 2020. doi:10.1152/ajpendo.00215.2020.
[22] C. Frühbeis, S. Helmig, S. Tug, P. Simon, E. Krämer-Albers, “Physical exercise induces rapid release of small extracellular vesicles into the circulation,” United States, North America: Co-Action Publishing, 2015.
[23] H.Y. Moon, K.J. Yoon, W. S. Lee, H.-S. Cho, D.-Y. Kim, J.-S. Kim, “Neural maturation enhanced by exercise-induced extracellular derivatives,” Scientific Reports, Vol. 10, Issue.3893, 2020. https://doi.org/10.1038/s41598-020-60930-6